[1] 戴晓天, 周和敏, 李 卫, 等. HRB400E含镍铬钢筋的试制[J]. 钢铁, 2016, 51(2): 84-89. Dai Xiaotian, Zhou Hemin, Li Wei, et al. HRB400E grade steel rebar containing Ni/Cr[J]. Iron and Steel, 2016, 51(2): 84-89. [2] 骆艳萍, 汪家晗, 李沐泽, 等. HRB400E抗震螺纹钢静态CCT曲线测定及组织分析[J]. 金属热处理, 2022, 47(9): 188-193. Luo Yanping, Wang Jiahan, Li Muze, et al. Static CCT curve measurement and microstructure analysis of HRB400E anti-seismic structural rebar[J]. Heat Treatment of Metals, 2022, 47(9): 188-193. [3] 吕煜坤, 赵雪柔, 石 拓. 不同生产工艺的500 MPa抗震钢筋高应变低周疲劳性能分析[J]. 西安工业大学学报, 2019, 39(2): 297-303. Lü Yukun, Zhao Xuerou, Shi Tuo. Analysis of high strain and low cycle fatigue behavior of 500 MPa anti-seismic rebars made with different production techniques[J]. Journal of Xi'an Technological University, 2019, 39(2): 297-303. [4] 朱占涛, 王增利, 付成安. 盘螺生产中贝氏体组织产生的原因及预防措施[C]//全国高速线材生产技术交流会论文集. 中国金属学会. 2007: 127-128. [5] Pawlowski B, Bale P, Dziurka R. Improper interpretation of dilatometric data for cooling transformation in steels[J]. Archives of Metallurgy and Materials, 2014, 59(3): 1159-1161. [6] Cezário A L S, Faria G L D. Proposition of an empirical functional equation to predict the kinetics of austenite to ferrite transformation in a continuous cooled IF-Ti-stabilized steel[J]. Materials Research, 2021, 24(2): e20200498. [7] Ghasemi B S S, Dunne D P. Formation of ferritic products during continuous cooling of a Cu-bearing HSLA steel[J]. Transactions of the Iron & Steel Institute of Japan, 2006, 46(5): 759-768. [8] 曹佳丽, 靳红泽, 李康立, 等. 水电用Q690CFD低合金高强钢SH-CCT曲线测定与分析[J]. 金属热处理, 2024, 49(2): 60-65. Cao Jiali, Jin Hongze, Li Kangli, et al. Measurement and analysis of SH-CCT curves of Q690CFD HSLA hydropower steel[J]. Heat Treatment of Metals, 2024, 49(2): 60-65. [9] 宋思颖, 田俊羽, 樊 雷, 等. 高性能建筑结构用钢Q460的动态和静态CCT曲线研究[J]. 武汉科技大学学报, 2021, 44(6): 406-414. Song Siying, Tian Junyu, Fan Lei, et al. Dynamic and static CCT curves of Q460 steel used for high performance building[J]. Journal of Wuhan University of Science and Technology, 2021, 44(6): 406-414. [10] Mesplont C, Zhao J Z, Vandeputte S, et al. An improved method for determining the continuous cooling transformation diagram of C-Mn steels[J]. Steel Research, 2001, 72(7): 263-270. [11] Moravec J, Mician M, Malek M, et al. Determination of CCT diagram by dilatometry analysis of high-strength low-alloy S960MC steel[J]. Materials, 2022, 15(13): 4637. [12] Grajcar A, Zalecki W, Skrzypczyk P, et al. Dilatometric study of phase transformations in advanced high-strength bainitic steel[J]. Journal of Thermal Analysis and Calorimetry, 2014, 118(2): 739-748. [13] Zhao J Z, Mesplont C, Cooman B C D. Kinetics of phase transformations in steels: A new method for analysing dilatometric results[J]. ISIJ International, 2001, 41(5): 492-497. [14] Müller M, Britz D, Ulrich L, et al. Classification of bainitic structures using textural parameters and machine learning techniques[J]. Metals, 2020, 10(5): 630. [15] 张朝晖, 刘 创, 赵福才, 等. 20MnSi中夹杂物对针状铁素体形成的影响[J]. 钢铁, 2017, 52(6): 87-93. Zhang Chaohui, Liu Chuang, Zhao Fucai, et al. Influence of inclusions on formation of acicular ferrite in 20MnSi steel[J]. Iron and Steel, 2017, 52(6): 87-93. [16] Li Zhuang, Wu Di, Lv Huisheng, et al. Continuous cooling transformation behaviour of C-Si-Mn TRIP steel[J]. Journal of Iron and Steel Research, International, 2007, 14(5): 277-281. |