金属热处理 ›› 2025, Vol. 50 ›› Issue (2): 1-7.DOI: 10.13251/j.issn.0254-6051.2025.02.001

• 组织与性能 •    下一篇

新型铁镍基高温合金的700 ℃蠕变性能及组织演变

焦春晖1,2, 潘艳君2, 李生志3, 白笃2, 李备1,4, 邓阁5, 贾晓帅1,4   

  1. 1.上海交通大学 材料科学与工程学院, 上海 200240;
    2.包头北方安全防护装备制造有限公司, 内蒙古 包头 014030;
    3.上海电气电站设备有限公司 上海汽轮机厂, 上海 200240;
    4.上海交通大学 内蒙古研究院, 内蒙古 呼和浩特 010052;
    5.上海市建设机械检测中心有限公司, 上海 200137
  • 收稿日期:2024-08-22 修回日期:2024-12-19 发布日期:2025-04-10
  • 通讯作者: 贾晓帅,副研究员,博士生导师,E-mail:jiaxiaoshuai@sjtu.edu.cn
  • 作者简介:焦春晖(2001—),男,硕士研究生,主要研究方向为高温合金组织表征和热处理工艺优化,E-mail:jch10129@sjtu.edu.cn。
  • 基金资助:
    国家重点研发计划(2023YFB4102300);科技兴蒙上海交通大学行动计划专项(2023XYJG0001-01-01)

Creep property and microstructure evolution at 700 ℃ of a novel Fe-Ni based superalloy

Jiao Chunhui1,2, Pan Yanjun2, Li Shengzhi3, Bai Du2, Li Bei1,4, Deng Ge5, Jia Xiaoshuai1,4   

  1. 1. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. Baotou North Safety Equipment Manufacturing Co., Ltd., Baotou Inner Mongolia 014030, China;
    3. Shanghai Turbine Plant, Shanghai Electric Power Station Equipment Co., Ltd., Shanghai 200240, China;
    4. Inner Mongolia Research Institute, Shanghai Jiao Tong University, Hohhot Inner Mongolia 010052, China;
    5. Shanghai Construction Machinery Testing Center Co., Ltd., Shanghai 200137, China
  • Received:2024-08-22 Revised:2024-12-19 Published:2025-04-10

摘要: 以超超临界火力发电机组用新型铁镍基高温合金为研究对象,在700 ℃开展不同应力(250、200 MPa)下的恒载蠕变试验,对其服役极限及服役寿命进行预判,并对蠕变过程组织演变进行分析。结果表明,在700 ℃/250 MPa与700 ℃/200 MPa两种蠕变条件下,试验合金的蠕变寿命分别为2378 h和12 716 h,结合Larson-Miller方程外推出该合金在700 ℃分别蠕变100 000 h和260 000 h时,可承受的载荷约为152 MPa和134 MPa,完全满足服役要求(应力35 MPa、蠕变寿命100 000 h)。组织表征发现,700 ℃/250 MPa试样组织中分布有高密度位错,而700 ℃/200 MPa试样中的位错分布较少;晶粒内部尺寸较大的MC碳化物主要为块状或棒状,在更高的应力状态下,MC碳化物的长大速度更快;晶界处尺寸较小的M23C6碳化物主要以链状形式析出,随蠕变时间的增加,M23C6碳化物的宽度增加;晶粒内部的γ′相始终呈球状,蠕变过程中发生粗化,部分晶界处的γ′相异常长大,形成不利于合金高温蠕变性能的PFZs/DCZs。

关键词: 新型铁镍基高温合金, 高温蠕变性能, 蠕变寿命预判, 组织表征

Abstract: A novel Fe-Ni-based superalloy, intended for ultra-supercritical thermal power generating units, was evaluated under constant load conditions at 700 ℃ with varying stress levels of 250 MPa and 200 MPa. The service limit and creep life of the alloy were predicted, and the microstructure evolution during creep was analyzed. The results indicate that the creep life of the alloy at 700 ℃/250 MPa and 700 ℃/200 MPa is 2378 h and 12 716 h, respectively. Based on the Larson-Miller equation, the alloy can withstand stresses of approximately 152 MPa after 100 000 h and 134 MPa after 260 000 h at 700 ℃, fully meeting the service requirements (stress of 35 MPa, creep life of 100 000 h). Microstructure analysis reveals that high-density dislocations are distributed in the 700 ℃/250 MPa specimen, whereas fewer dislocations are observed in the 700 ℃/200 MPa specimen. The MC carbides with larger size within the grains predominantly exhibit blocky or rod-like morphologies, with faster growth rates under higher stress conditions. The smaller M23C6 carbides at grain boundaries precipitate primarily in chain form, and their width increases with prolonged creep exposure. The γ′ phase within the grains remains spherical but undergoes coarsening during creep. Notably, some grain boundary γ′ phases exhibit abnormal growth, forming PFZs/DCZs, which adversely affect the alloy's high-temperature creep performance.

Key words: novel Fe-Ni based superalloy, high temperature creep property, creep life prediction, microstructure characterization

中图分类号: