[1] 林驰皓. 热管理铜基材料的金属注射成形技术研究[D]. 贵州: 贵州大学, 2022. [2] 赵鹏鹏, 谭建波. 金属基复合材料的制备方法及发展现状[J]. 河北工业科技, 2017, 34(3): 215-221. Zhao Pengpeng, Tan Jianbo. Preparation method and research status of metal matrix composites[J]. Hebei Journal of Industrial Science and Technology, 2017, 34(3): 215-221. [3] 沈 彤. 柴油机传动装置齿轮软氮化工艺的研究[D]. 南京: 南京理工大学, 2004. [4] 王苡良. PIP渗层深度对轻武器零部件材料组织和性能的影响[D]. 成都: 西华大学, 2022. [5] Li H Y, Luo D F, Yeung C F, et al. Microstructural studies of QPQ complex salt bath heat-treated steels[J]. Journal of Materials Processing Technology, 1997, 69(1-3): 45-49. [6] Xiong G Y, He B L, Zou R. Research of microstructure and properties of the 4Cr14Ni14W2Mo steel with QPQ salt-bath nitriding[J]. Key Engineering Materials, 2008, 373: 260-263. [7] 牟鑫斌. 316L奥氏体不锈钢低温渗氮层和低温渗碳层的组织性能研究[D]. 兰州: 兰州理工大学, 2019. [8] Dong H. S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys[J]. International Materials Reviews, 2010, 55(2): 65-98. [9] 谢明强, 李惠友, 汪 辉, 等. 深层QPQ处理的渗层组织和元素分布[J]. 金属热处理, 2010, 35(7): 21-25. Xie Mingqiang, Li Huiyou, Wang Hui, et al. Microstructure and elements distribution of layer after deep-layer QPQ treatment[J]. Heat Treatment of Metals, 2010, 35(7): 21-25. [10] 陈 胜. QPQ工艺技术在枪械生产中的运用[J]. 四川兵工学报, 2009, 30(7): 78-81. [11] 马跃林. QPQ处理对35钢组织性能的影响[J]. 热加工工艺, 2014, 43(6): 203-204, 208. Ma Yuelin. Effect of QPQ treatment on microstructure and properties of 35 steel[J]. Hot Working Technology, 2014, 43(6): 203-204, 208. [12] 高玉魁. 表面形变处理对32Cr3MoVA钢渗氮层组织和性能的影响[J]. 材料热处理学报, 2005, 26(1): 74-76. Gao Yukui. Influence of surface straining on microstructure and mechanical property of 32Cr3MoV steel[J]. Transactions of Materials and Heat Treatment, 2005, 26(1): 74-76. [13] 刘仲玉, 王兴伟, 孙金全, 等. 气体催化渗氮对12Cr1MoV钢力学性能的影响[J]. 材料热处理学报, 2019, 40(3): 148-153. Liu Zhongyu, Wang Xingwei, Sun Jinquan, et al. Effect of gas catalytic nitriding on mechanical properties of 12Cr1MoV steel[J]. Transactions of Materials and Heat Treatment, 2019, 40(3): 148-153. [14] 毛信孚, 朱本一, 王庆新, 等. 航空燃油附件零件渗氮技术的应用[J]. 金属热处理, 2001, 26(6): 41-44. Mao Xinfu, Zhu Benyi, Wang Qingxin, et al. Application of nitriding technology for parts of aero-fuel accessory[J]. Heat Treatment of Metals, 2001, 26(6): 41-44. [15] 向文华, 王守忠. 表面纳米化预处理对316L不锈钢渗氮层摩擦学性能的影响[J]. 材料保护, 2017, 50(7): 23-28. Xiang Wenhua, Wang Shouzhong. Effect of surface nanocrystallization pretreatment on tribological properties of nitrogen layers of 316L stainless steel[J]. Materials Protection, 2017, 50(7): 23-28. [16] 龙有红, 任岩平, 何 添, 等. 31CrMoV9钢离子渗氮层的微动摩擦磨损特性研究[J]. 摩擦学学报, 2024, 44(5): 633-643. Long Youhong, Ren Yanping, He Tian, et al. Study on fretting wear behaviour of plasma nitriding layer of 31CrMoV9 steel[J]. Tribology, 2024, 44(5): 633-643. [17] 李文明, 罗德福, 韩瑞鹏, 等. 可控离子渗入工艺对304不锈钢组织和耐磨抗蚀性能的影响[J]. 金属热处理, 2019, 44(9): 177-181. Li Wenming, Luo Defu, Han Ruipeng, et al. Effect of programmable ion permeation process on microstructure and anti-wear anti-corrosion properties of 304 stainless steel[J]. Heat Treatment of Metals, 2019, 44(9): 177-181. [18] 李相荣. 粉末冶金法制备奥氏体铁基合金及其耐磨性和耐腐蚀性研究[D]. 成都: 四川大学, 2021. [19] 李冬冬, 邓尼丝, 许佳宁, 等. 65Mn、35Cr2Ni3MoV和AF1410在模拟海洋环境中的耐蚀性[J]. 腐蚀与防护, 2015, 36(4): 355-361. Li Dongdong, Deng Nisi, Xu Jianing, et al. Corrosion resistance of 65Mn, 35Cr2Ni3MoV and AF1410 in simulated marine environment[J]. Corrosion and Protection, 2015, 36(4): 355-361. [20] 李顺涛, 陈 华, 亢淑梅, 等. 高锰钢海水腐蚀电化学行为研究[J]. 宽厚板, 2022, 28(3): 13-19. Li Shuntao, Chen Hua, Kang Shumei, et al. Study on electrochemical behavior of high manganese steel corrosion in seawater[J]. Wide and Heavy Plate, 2022, 28(3): 13-19. [21] 刘 欣, 裴 锋, 朱亦晨, 等. Q235钢和纯铜在不同pH红壤模拟溶液中的腐蚀电化学特征[J]. 腐蚀与防护, 2020, 41(3): 22-25, 31. Liu Xin, Pei Feng, Zhu Yichen, et al. Electrochemical corrosion characteristics of Q235 steel and copper in simulated red soil solutions with different pH values[J]. Corrosion and Protection, 2020, 41(3): 22-25, 31. [22] 赵天雷, 路 伟, 吕海武, 等. 10号碳钢在NaOH溶液中的腐蚀电化学行为[J]. 腐蚀与防护, 2018, 39(11): 833-837, 842. Zhao Tianlei, Lu Wei, Lü Haiwu, et al. Electrochemical corrosion behavior of 10# carbon steel in NaOH solution[J]. Corrosion and Protection, 2018, 39(11): 833-837, 842. [23] 张旭昀, 吴 戇, 芦海俊, 等. 高氮钢在含Na2S饱和CO2溶液中的腐蚀电化学行为[J]. 化工机械, 2017, 44(1): 12-16. Zhang Xuyun, Wu Zhuang, Lu Haijun, et al. Electrochemical corrosion properties of HNS in saturated CO2 solution containing Na2S[J]. Chemical Engineering and Machinery, 2017, 44(1): 12-16. [24] Kuruvilla M, Prasad A R, John S, et al. Enhanced inhibition of the corrosion of metallic copper exposed in sulphuric acid through the synergistic interaction of cysteine and alanine: Electrochemical and computational studies[J]. Journal of Bio-and Tribo-Corrosion, 2017, 3(1): 1-12. [25] 张度宝, 李成涛, 方可伟, 等. 恒载荷条件下904L不锈钢的腐蚀电化学行为[J]. 腐蚀与防护, 2019, 40(5): 354-358. Zhang Dubao, Li Chengtao, Fang Kewei, et al. Electrochemical corrosion behavior of 904l stainless steel under constant load[J]. Corrosion and Protection, 2019, 40(5): 354-358. [26] 谭晓明, 战贵盼, 张丹峰, 等. 加速腐蚀试验下PCB-ENIG的腐蚀电化学行为[J]. 表面技术, 2021, 50(10): 345-352. Tan Xiaoming, Zhan Guipan, Zhang Danfeng, et al. Corrosion electrochemical behaviour of PCB-ENIG in accelerated test environment[J]. Surface Technology, 2021, 50(10): 345-352. |