[1] 郝世明, 毛志平, 谢敬佩. 热处理对WC-Co硬质合金顶锤组织与力学性能的影响[J]. 金属热处理, 2023, 48(6): 63-67. Hao Shiming, Mao Zhiping, Xie Jingpei. Effect of heat treatment on microstructure and mechanical properties of WC-Co cemented carbide anvil[J]. Heat Treatment of Metals, 2023, 48(6): 63-67. [2] García J, Ciprés C V, Blomqvist A, et al. Cemented carbide microstructures: A review[J]. International Journal of Refractory Metals and Hard Materials, 2019, 80: 40-68. [3] Cao R J, Lin C G, Xie X C, et al. Microstructure and mechanical properties of WC-Co-based cemented carbide with bimodal WC grain size distribution[J]. Rare Metals, 2023, 42: 2809-2815. [4] Rosa J M B, Lugon R D, Silva K D S, et al. Study of characteristics and properties of spark plasma sintered WC with the use of alternative Fe-Ni-Nb binder as Co replacement[J]. International Journal of Refractory Metals& Hard Materials, 2020, 92: 105316. [5] Roulon Z, Missiaen J M, Lay S. Carbide grain growth in cemented carbides sintered with alternative binders[J]. International Journal of Refractory Metals and Hard Materials, 2020, 86: 105088. [6] Sun J L, Zhao J, Gong F, et al. Development and application of WC-based alloys bonded with alternative binder phase[J]. Critical Reviews in Solid State and Materials Sciences, 2019, 44(3): 211-238. [7] Pötschke J, Dahal M, Vornberger A, et al. Production and properties of high entropy carbide based hardmetals[J]. Metals, 2021, 11(2): 271. [8] 廖常平, 伍小波, 陈 明, 等. 以高熵合金作为黏结相的WC基硬质合金的研究进展[J]. 硬质合金, 2024, 41(1): 70-78. Liao Changping, Wu Xiaobo, Chen Ming, et al. Research progress of WC-based cemented carbide with high entropy alloy as binder[J]. Cemented Carbides, 2024, 41(1): 70-78. [9] 虞一凡, 田 君, 刘 涛, 等. CoCrFeNiWx高熵合金黏结剂对WC硬质合金显微组织和力学性能的影响[J]. 机械工程材料, 2023, 47(2): 14-21. Yu Yifan, Tian Jun, Liu Tao, et al. Effect of CoCrFeNiWx high entropy alloy binder on microstructure and mechanical properties of WC cemented carbide[J]. Materials for Mechanical Engineering, 2023, 47(2): 14-21. [10] Li K J, Yang X F, Shen S H, et al. Research and prospect of novel WC-HEA cemented carbide[J]. The International Journal of Advanced Manufacturing Technology, 2024, 130: 2085-2117. [11] Chen C S, Yang C C, Chai H Y, et al. Novel cermet material of WC/multi element alloy[J]. International Journal of Refractory Metals and Hard Materials, 2014, 43: 200-204. [12] 杨静怡, 原一高, 张建国. CoCrFeNi基高熵合金熔体在碳化钨表面的润湿性能[J]. 东华大学学报(自然科学版), 2023, 49(1): 58-63. Yang Jingyi, Yuan Yigao, Zhang Jianguo. Wettability of CoCrFeNi-based high entropy alloy melt on tungsten carbide surface[J]. Journal of Donghua University(Natural Science), 2023, 49(1): 58-63. [13] Zhang A J, Han J S, Su B, et al. Microstructure, mechanical properties and tribological performance of CoCrFeNi high entropy alloy matrix self-lubricating composite[J]. Materials and Design, 2017, 114: 253-263. [14] Nakonechnyi S O, Yurkova A I, Loboda P I. WC-based cemented carbide with NiFeCrWMo high-entropy alloy binder as an alternative to cobalt[J]. Vacuum, 2024, 222: 113052. [15] Zhang C L, Luo X, Ma L F, et al. Study on microstructure and properties of WC particle-reinforced FeCoCrNi-matrix high entropy alloy composites[J]. Materials, 2023, 16(23): 7380-7398. [16] Zhao Z D, Wang K W, Hu Y J, et al. Microstructure and properties of coarse WC-10CoCrFeMnNi cemented carbide by mechanical alloying and hot pressing sintering[J]. Materials Today Communications, 2023, 37: 107137. [17] Mueller-Grunza A, Alveen P, Rassbach S, et al. The manufacture and characterization of WC-(Al)CoCrCuFeNi cemented carbides with nominally high entropy alloy binders[J]. International Journal of Refractory Metals & Hard Materials, 2019, 4: 105032. [18] Mane R B, Rajkumar Y, Panigrahi B B. Sintering mechanism of CoCrFeMnNi high-entropy alloy powders[J]. Powder Metallurgy, 2018, 6(2): 131-138. [19] Zheng D H. High-entropy-alloy CoFeNiCr bonded WC-based cemented carbide prepared by spark plasma sintering[J]. Metallurgical and Materials Transactions A, 2022, 53: 2724-2729. [20] Farag S, Konyashin I, Ries R. The influence of grain growth inhibitors on the microstructure and properties of submicron, ultrafine and nano-structured hard metals-A review[J]. International Journal of Refractory Metals and Hard Materials, 2018, 77: 12-30. [21] Luo W Y, Liu Y Z, Liu X H, et al. Oxidation behavior of ultrafine WC-based cemented carbides with AlxCoCrCuFeNi high-entropy alloy binders[J]. Ceramics International, 2021, 47: 8498-8509. [22] Xu J, Wang S R, Shang C Y, et al. Microstructure and properties of CoCrFeNi(WC)high-entropy alloy coatings prepared using mechanical alloying and hot pressing sintering[J]. Coatings, 2019, 9(1): 16-27. [23] Yadava S, Zhang Q F, Behera A, et al. Role of binder phase on the microstructure and mechanical properties of a mechanically alloyed and spark plasma sintered WC-FCC HEA composites[J]. Journal of Alloys and Compounds, 2021, 877: 160265. [24] Luo W Y, Liu Y Z, Shen J J. Effects of binders on the microstructures and mechanical properties of ultrafine WC-10%AlxCoCrCuFeNi composites by spark plasma sintering[J]. Journal of Alloys and Compounds, 2019, 791: 540-549. [25] Kumar S, Venkata B, Wook Y. Tribology of WC reinforced SiC ceramics: Influence of counterbody[J]. Friction, 2019, 7(2): 129-142. [26] Wu J, Chen Y J, Zhu H G, et al. A review on the tribological performances of high-entropy alloys[J]. Advanced Engineering Materials, 2022, 24(8): 2101548. [27] Bartolomeu F, Buciumeanu M, Pinto E, et al. 316L stainless steel mechanical and tribological behavior-A comparison between selective laser melting, hot pressing and conventional casting[J]. Additive Manufacturing, 2017, 16: 81-89. [28] Wang W, Fu Z Q, Zhu L N, et al. Effects of titanium-implanted dose on the tribological properties of 316L stainless steel[J]. Materials, 2021, 14(6): 1482. |