[1] Tang H P, Wang Q D, Luo C, et al. Effects of aging treatment on the precipitation behaviors and mechanical properties of Al-5.0Mg-3.0Zn-1.0Cu cast alloys[J]. Journal of Alloys and Compounds, 2020, 842: 155707. [2] Aktug S L, Durdu S, Aktas S, et al. Surface and in vitro properties of Ag-deposited antibacterial and bioactive coatings on AZ31 Mg alloy[J]. Surface and Coatings Technology, 2019, 375: 46-53. [3] 马跃宇, 何德山, 涂思京, 等. 稀土对镁合金微弧氧化层的作用综述[J]. 稀有金属, 2017, 41(6): 709-713. Ma Yueyu, He Deshan, Tu Sijing, et al. Effects of rare earths on micro-arc oxidation of magnesium alloys: A review[J]. Chinese Journal of Rare Metals, 2017, 41(6): 709-713. [4] Zhang X, Chen Y, Hu J. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018, 97: 22-34. [5] Bai J, Yang Y, Wen C, et al. Applications of magnesium alloys for aerospace: A review[J]. Journal of Magnesium and Alloys, 2023, 11(10): 3609-3619. [6] Tang M, Shao Y, Feng Z, et al. Self-sealing microarc oxidation coating mainly containing ZrO2 and nano Mg2Zr5O12 on AZ91D Mg alloy[J]. International Journal of Electrochemical Science, 2020, 15(12): 12447-12461. [7] 雍家惠, 李宏战, 李争显, 等. 微纳米颗粒添加剂在镁合金微弧氧化涂层中的应用研究现状[J]. 稀有金属, 2021, 45(10): 1230-1240. Yong Jiahui, Li Hongzhan, Li Zhengxian, et al. Research status of application of micro-nano additives in micro-arc oxidation coatings formed on magnesium alloys[J]. Chinese Journal of Rare Metals, 2021, 45(10): 1230-1240. [8] 边 昊, 梁 军, 彭振军, 等. 电解液中添加钛纳米颗粒对AZ91D镁合金表面微弧氧化膜性能的影响研究[J]. 材料保护, 2023, 56(4): 1-9. Bian Hao, Liang Jun, Peng Zhenjun, et al. Effect of titanium nanoparticles in electrolyte on the properties of micro-arc oxidation coatings on AZ91D magnesium alloy surface[J]. Materials Protection, 2023, 56(4): 1-9. [9] Wang Y, Wei D, Yu J, et al. Effects of Al2O3 nano-additive on performance of micro-arc oxidation coatings formed on AZ91D Mg alloy[J]. Journal of Materials Science and Technology, 2014, 30(10): 984-990. [10] Toorani M, Aliofkhazraei M, Sabour Rouhaghdam A. Microstructural, protective, inhibitory and semiconducting properties of PEO coatings containing CeO2 nanoparticles formed on AZ31 Mg alloy[J]. Surface and Coatings Technology, 2018, 352: 561-580. [11] Zhuang J J, Guo Y Q, Xiang N, et al. A study on microstructure and corrosion resistance of ZrO2-containing PEO coatings formed on AZ31 Mg alloy in phosphate-based electrolyte[J]. Applied Surface Science, 2015, 357: 1463-1471. [12] Shi Z, Atrens A. An innovative specimen configuration for the study of Mg corrosion[J]. Corrosion Science, 2011, 53(1): 226-246. [13] Cui L Y, Gao S D, Li P P, et al. Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31[J]. Corrosion Science, 2017, 118: 84-95. [14] Habibnejad-Korayem M, Mahmudi R, Ghasemi H M, et al. Tribological behavior of pure Mg and AZ31 magnesium alloy strengthened by Al2O3 nano-particles[J]. Wear, 2010, 268(3/4): 405-412. [15] 王立世, 蔡启舟, 魏伯康, 等. 硅酸盐和磷酸盐电解液中AZ91D镁合金微弧氧化的成膜特性[J]. 金属热处理, 2005, 30(4): 17-20. Wang Lishi, Cai Qizhou, Wei Bokang, et al. Characteristic of oxide films formed on Mg-based AZ91D alloy by microarc oxidation in silicate and phosphate electrolytes[J]. Heat Treatment of Metals, 2005, 30(4): 17-20. [16] Ghasemi A, Raja V S, Blawert C, et al. The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings[J]. Surface and Coatings Technology, 2010, 204(9/10): 1469-1478. [17] Gu Y, Chen C, Bandopadhyay S, et al. Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31 alloy in simulated body fluid[J]. Applied Surface Science, 2012, 258(16): 6116-6126. [18] Shao Y, Huang H, Zhang T, et al. Corrosion protection of Mg-5Li alloy with epoxy coatings containing polyaniline[J]. Corrosion Science, 2009, 51(12): 2906-2915. [19] Pojtanabuntoeng T, Kinsella B, Ehsani H, et al. Assessment of corrosion control by pH neutralisation in the presence of glycol at low temperature[J]. Corrosion Science, 2017, 126: 94-103. |