[1] 张娟梅. 热轧热镀锌板生产工艺研究及应用[J]. 山西冶金, 2010, 33(1): 53-54. Zhang Juanmei. Research and application in production process of hot-rolld galvanized strip[J]. Shanxi Metallurgy, 2010, 33(1): 53-54. [2] 蒋凤兵, 邢 闻, 缪 颢. 宝钢热轧基板热镀锌的发展及应用[J]. 硅谷, 2011(15): 30-31. [3] 王 峰, 贾 宇, 王向荣, 等. 热基镀锌生产工艺现状分析[J]. 河北冶金, 2019(11): 70-74. Wang Feng, Jia Yu, Wang Xiangrong, et al. Analysis of the present situation of hot-dip galvanizing process[J]. Hebei Metallurgy, 2019(11): 70-74. [4] 贾国生, 刘振宇, 刘红艳, 等. 低成本高品质热基镀锌生产工艺创新及应用[Z]. 河钢集团邯钢公司, 2017. [5] 王金海, 赵卫红, 范春磊. 邯钢超厚规格热基镀锌板的生产应用[J]. 山西冶金, 2020, 43(4): 126-127. Wang Jinhai, Zhao Weihong, Fan Chunlei. Production and application of super thick hot-based galvanized sheet in Handan Iron and Steel Company[J]. Shanxi Metallurgy, 2020, 43(4): 126-127. [6] 邹 英, 刘华赛, 韩 赟, 等. 汽车用热基镀锌高强钢的研发进展[J]. 钢铁, 2022, 57(12): 118-130. Zou Ying, Liu Huasai, Han Yun, et al. Research and development progress of hot-rolled galvanized high-strength steel for automobile[J]. Iron and Steel, 2022, 57(12): 118-130. [7] Yousaf M, Iqbal J, Ajmal M. Variables affecting growth and morphology of the intermetallic layer (Fe2Al5)[J]. Materials Characterization, 2011, 62(5): 517-525. [8] Dubiel S M, Gondek L, Zienert T, et al. Mossbauer spectroscopic and XRD studies of two 1-Fe2Al5 intermetallics[J]. Intermetallics, 2021, 135: 107217. [9] Scheiber D, Essl W, Spitaler J, et al. Particle growth across the scales: A combination of ab initio, molecular dynamics, and kinetic Monte Carlo simulations for Fe2Al5 in liquid Zn[J]. Acta Materialia, 2024, 262: 119423. [10] Khoshhal R. Investigation of oxidation behavior of synthesized Fe2Al5 and FeAl[J]. Metal Powder Report, 2019, 74(1): 30-34. [11] Naoi D, Kajihara M. Growth behavior of Fe2Al5 during reactive diffusion between Fe and Al at solid-state temperatures[J]. Materials Science and Engineering A, 2007, 459(1-2): 375-382. [12] 王兴庆, 隋永江, 吕海波. 铁铝原子在金属间化合物形成中的扩散[J]. 上海大学学报(自然科学版), 1998, 4(6): 661-667. Wang Xingqing, Sui Yongjiang, Lü Haibo. Fe and Al atoms diffusion in intermetallic formation[J]. Journal of Shanghai University(Natural Science Edition), 1998, 4(6): 661-667. [13] Liu Yahui, Chong Xiaoyu, Jiang Yehua, et al. Mechanical properties and electronic structures of Fe-Al intermetallic[J]. Physica B: Condensed Matter, 2017, 56: 1-11. [14] 韦 影, 尹付成, 彭梅香, 等. 热力学分析在连续镀锌过程中的应用[J]. 湘潭大学自然科学学报, 2002, 24(4): 65-69. Wei Ying, Yin Fucheng, Peng Meixiang, et al. The application of thermodynamic analysis in the continuous galvanizing process[J]. Natural Science Journal of Xiangtan University, 2002, 24(4): 65-69. [15] 杜 安. 合金元素对铁基耐熔锌腐蚀合金性能影响的研究[D]. 天津: 河北工业大学, 2007. Du An. Research on effects of elements to properties of the iron base corrosion resisting alloys[D]. Tianjin: Hebei University of Technology, 2007. [16] Mcdermid J R, Kaye M H, Thompson W T. Fe solubility in the Zn-rich corner of the Zn-Al-Fe system for use in continuous galvanizing and galvannealing[J]. Metallurgical and Materials Transactions B, 2007, 38(2): 215-230. [17] 吴 煜. Zn-Fe-Mo体系相平衡研究及锌液中铝的扩散系数的测定[D]. 湘潭: 湘潭大学, 2006. Wu Yu. Study of the phase diagram Zn-Fe-Mo system at the Zn-rich corner and the determination of the liquid diffusion coefficient Al in molten Zn[D]. Xiangtan: Xiangtan University, 2006. [18] Miller W A, Chadwick G A. On the magnitude of the solid/liquid interfacial energy of pure metals and its relation to grain boundary melting[J]. Acta Metallurgica, 1967, 15(4): 607-614. [19] Tang N Y. Modeling Al enrichment in galvanized coatings[J]. Metallurgical and Materials Transactions A, 1995, 26(7): 1699-1704. [20] Clarence Zener. Theory of growth of spherical precipitates from solid solution[J]. Journal of Applied Physics, 1949, 20(10): 950-953. [21] Yuan S, Zhou X, Huang Y, et al. Influence of air knives on liquid zinc flow in galvanising bath[J]. Ironmaking and Steelmaking, 2016, 43(2): 83-87. [22] Dutta M, Singh S B. Effect of strip temperature on theformation of an Fe2Al5 inhibition layer during hot-dip galvanizing[J]. Scripta Materialia, 2009, 60(8): 643-646. |