[1] Gan W Y, Gao H S, Pei H Q, et al. Effect of microstructure and lattice misfit on creep life of Ni-based single crystal superalloy during long-term thermal exposure[J]. International Journal of Materials Research, 2021, 112(3): 203-214. [2] Sun J X, Liu J L, Liu L R, et al. Effect of Al on microstructural stability and related stress-rupture properties of a third-generation single crystal superalloy[J]. Journal of Materials and Technology, 2019, 35(11): 2537-2542. [3] Tan Z H, Yang L, Wang X G, et al. Evolution of TCP phase during long term thermal exposure in several Re-containing single crystal superalloys[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(5): 731-740. [4] Wang X D, Yang Z, Gao Q, et al. Effect of long-term thermal exposure on microstructure and creep properties of DD5 single crystal superalloy[J]. China Foundry, 2021, 18(3): 185-191. [5] Gao S, Liu Z Q, Cui J P, et al. In situ transformation from P phase to "μ" phase in rhenium-containing single crystal superalloy during thermal exposure[J]. Philosophical Magazine Letters, 2017, 97(5): 188-196. [6] Liu L R, Chen H J, Jin T, et al. Effect of γ′ formation and strengthening elements on microstructures and stress rupture property of single crystal superalloys[J]. China Foundry, 2010, 7(3): 265-269. [7] Reed R C. The Superalloy Fundamentals and Application[M]. Cambridge: Cambridge University Press, 2006. [8] Ding Q Q, Li S Z, Chen L Q, et al. Re segregation at interfacial dislocation network in nickel-based superalloy[J]. Acta Materialia, 2018, 154: 137-146. [9] Tao X P, Wang X G, Meng J, et al. Creep failure and deformation mechanism investigation on a novel single crystal superalloy with various primary ageing temperatures[J]. Engineering Failure Analysis, 2022, 133: 1-14. [10] Long H B, Mao S C, Liu Y N, et al. Structural evolution of topologically closed packed phase in a Ni-based single crystal superalloy[J]. Acta Materialia, 2020, 185: 233-244. [11] 孙乃荣. 一种低铼镍基单晶高温合金的热处理组织和高温性能优化研究[D]. 上海: 上海交通大学, 2014. [12] Fink P J, Miller J L, Konitzer D G. Rhenium reduction-alloy design using an economically strategic element[J]. JOM, 2010, 62(1): 55-57. [13] 阳志安. 层错能、孪晶及蠕变摩擦应力对Ni-Cr-Co合金高温蠕变的作用[D]. 沈阳: 中国科学院金属研究所, 1985. [14] Jiang X W, Wang D, Wang D, et al. Microstructural degradation and the effects on creep properties of a hot corrosion-resistant single-crystal Ni-based superalloy during long-term thermal exposure[J]. Metallurgical and Materials Transactions A, 2018, 49(11): 5309-5322. [15] Goerler J V, Lopez-Galilea I, Mujica Roncery L, et al. Topological phase inversion after long-term thermal exposure of nickel-base superalloys: Experiment and phase-field simulation[J]. Acta Materialia, 2017, 124: 151-158. [16] Epishin A, Link T, Klingelhoffer H, et al. Creep damage of single-crystal nickel base superalloys: Mechanisms and effect on low cycle fatigue[J]. Materials High Temperature, 2014, 27: 53-59. [17] 杨金龙, 王 冲, 孙乃荣, 等. 长期时效对两种镍基单晶高温合金组织稳定性的影响[J]. 热加工工艺, 2019, 48(2): 186-191. Yang Jinlong, Wang Chong, Sun Nairong, et al. Effect of long-term aging on microstructure stability of two kinds of Ni-base superalloy[J]. Hot Working Technology, 2019, 48(2): 186-191. [18] Yang X X, Cui X, Yuan H. Correlations between microstructure evolution and mechanical behavior of a nickel-based single crystal superalloy with long-term aging effects[J]. Materials Characterization, 2020, 169: 110652. [19] Zhang J C, Liu L, Huang T W, et al. Coarsening kinetics of γ′ precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging[J]. Journal of Materials Science and Technology, 2021, 62(30): 1-10. [20] 黄太文, 卢 晶, 许 瑶, 等. Re和Ta对抗热腐蚀单晶高温合金900 ℃长期时效组织稳定性的影响[J]. 金属学报, 2019, 55(11): 1427-1436. Huang Taiwen, Lu Jing, Xu Yao, et al. Effects of rhenium and tantalum on microstructural stability of hot-corrosion resistant single crystal superalloys aged at 900 ℃[J]. Acta Metallurgica Sinica, 2019, 55(11): 1427-1436. |