[1] 耿思远, 杨卯生, 赵昆渝. 温度对高钴钼不锈轴承钢高周疲劳性能的影响[J]. 钢铁, 2018, 53(12): 77-85. Geng Siyuan, Yang Maosheng, Zhao Kunyu. Influence of temperature on high cycle fatigue properties of high cobalt molybdenum stainless bearing steel[J]. Iron and Steel, 2018, 53(12): 77-85. [2] 侯智鹏, 杨卯生, 赵昆渝, 等. 高温与应力耦合作用下Cr-Co-Mo-Ni齿轮轴承钢微观组织演变[J]. 钢铁, 2014, 49(4): 80-85. Hou Zhipeng, Yang Maosheng, Zhao Kunyu, et al. Microstructure evolution research of Cr-Co-Mo-Ni gear and bearing steel under action of temperature and steel coupling[J]. Iron and Steel, 2014, 49(4): 80-85. [3] Matlock D K, Alogab K A, Rechards M D, et al. Surface processing to improve the fatigue resistance of advanced bar steels for automotive applications[J]. Materials Research, 2005, 8(4): 453-459. [4] Asi O, Can A Ç, Pineaul J, et al. The relationship between case depth and bending fatigue strength of gas carburized SAE 8620 steel[J]. Surface and Coatings Technology, 2007, 201(12): 5979-5987. [5] 王 博, 杨卯生, 赵昆渝. 双真空冶炼高合金轴承钢后真空表面渗碳疲劳性能的研究[J]. 真空科学与技术学报, 2016, 36(7): 838-843. Wang Bo, Yang Maosheng, Zhao Kunyu. Fatigue resistance of surface-carburized Cr-Co-Mo-Ni bearing steel refined by vacuum melting[J]. Chinese Journal of Vacuum Science and Technology, 2016, 36(7): 838-843. [6] Liu Z, Wang S, Feng Y, et al. Exploration on the fatigue behavior of low-temperature carburized 316L austenitic stainless steel at elevated temperature[J]. Materials Science and Engineering A, 2022, 850: 143562. [7] Jiang Y, Sun N, Peng Y, et al. Stability of low-temperature-gaseous-carburization layer in AISI316L stainless steel at high temperature[J]. Surface and Interfaces, 2021, 23: 100898. [8] Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions[J]. International Journal of Fatigue, 1989, 11(5): 291-298. [9] 马永庆, 高洪涛, 章晓静, 等. CrWMn钢中添加微量Mo对网状碳化物的影响[J]. 金属热处理, 2018, 43(4): 34-38. Ma Yongqing, Gao Hongtao, Zhang Xiaojing, et al. Effect of adding little Mo on network carbide in CrWMn steel[J]. Heat Treatment of Metals, 2018, 43(4): 34-38. [10] 王 会, 王昊杰, 贾 涛, 等. 航空轴承钢的真空低压渗碳工艺[J]. 金属热处理, 2020, 45(1): 1-5. Wang Hui, Wang Haojie, Jia Tao, et al. Low pressure carburizing process for aviation bearing steel[J]. Heat Treatment of Metals, 2020, 45(1): 1-5. [11] Xiao N, Hui W, Zhang Y, et al. High-cycle fatigue behavior of vacuum-carburized 20Cr2Ni4 steel with different case depths[J]. Journal of Materials Engineering and Performance, 2019, 28: 3413-3422. [12] Minamizawa K, Arakawa J, Akebono H, et al. Fatigue limit estimation for carburized steels with surface compressive residual stress considering residual stress relaxation[J]. International Journal of Fatigue, 2022, 160: 106846. [13] 尹龙承. 14Cr14Co13Mo4钢Ni缓冲层法渗碳及热处理工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. [14] 杜宁宇. M50轴承钢碳化物调控与疲劳性能研究[D]. 合肥: 中国科学技术大学, 2022. [15] 杨 芳, 丁志敏. 耐磨高锰钢的发展现状[J]. 机车车辆工艺, 2006(6): 6-9. [16] Zhang P, Li S X, Zhang Z F. General relationship between strength and hardness[J]. Materials Science and Engineering A, 2011, 529: 62-73. [17] 高玉魁. 残余应力基础理论及应用[M]. 上海: 上海科学技术出版, 2019. [18] 薛 河, 侯鹏飞, 李富强, 等. 残余应力与304奥氏体不锈钢表面硬度的关系[J]. 热加工工艺, 2020, 49(22): 44-47. Xue He, Hou Pengfei, Li Fuqiang, et al. Relationship between residual stress and surface hardness of 304 austenitic stainless steel[J]. Hot Working Technology, 2020, 49(22): 44-47. [19] Liu Z, Zhang S, Wang S, et al. On the fatigue behavior of low-temperature gaseous carburized 316L austenitic stainless steel: Experimental analysis and predictive approach[J]. Materials Science and Engineering A, 2020, 793: 139651. [20] Tokaji K, Kohyama K, Akita M. Fatigue behaviour and fracture mechanism of a 316 stainless steel hardened by carburizing[J]. International Journal of Fatigue, 2004, 26(5): 543-551. [21] Fan K, Liu D, Liu Y, et al. Competitive effect of residual stress and surface roughness on the fatigue life of shot peened S42200 steel at room and elevated temperature[J]. Tribology International, 2023, 183: 108422. [22] Genel K. Estimation method for the fatigue limit of case hardened steels[J]. Surface and Coatings Technology, 2005, 194(1): 91-95. [23] 刘明霞, 王 东, 张文康, 等. 喷完强化对17-4PH不锈钢室温及高温疲劳性能的影响[J]. 材料导报, 2020, 34(11): 22124-22129. |