[1] Gutierrez-Urrutia I, Raabe D. Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels[J]. Scripta Materialia, 2013, 68(6): 343-347. [2] Liu D G, Cai M H, Ding H, et al. Control of inter/intra-granular κ-carbides and its influence on overall mechanical properties of a Fe-11Mn-10Al-1.25C low density steel[J]. Materials Science and Engineering A, 2018, 715: 25-32. [3] Wang Z W, Lu W J, Zhao H, et al. Formation mechanism of κ-carbides and deformation behavior in Si alloyed FeMnAlC lightweight steels[J]. Acta Materialia, 2020, 198: 258-270. [4] Han D, Ding H, Liu D G, et al. Influence of C content and annealing temperature on the microstructures and tensile properties of Fe-13Mn-8Al-(0.7, 1.2)C steels[J]. Materials Science and Engineering A, 2020, 785: 139-286. [5] Liu D G, Ding H, Han D, et al. Microstructural evolution and tensile properties of Fe-11Mn-10Al-1.2C medium Mn lightweight steel[J]. Materials Science and Engineering A, 2020, 797: 140-256. [6] Wu Z Q, Ding H, Li H Y, et al. Microstructural evolution and strain hardening behavior during plastic deformation of Fe-12Mn-8Al-0.8C steel[J]. Materials Science and Engineering A, 2013, 584: 150-155. [7] Mohamadizadeh A, Hanzaki A Z, Kisko A, et al. Ultra-fine grained structure formation through deformation-induced ferrite formation in duplex low-density steel[J]. Materials and Design, 2016, 92: 322-329. [8] Park Kyung-Tae. Tensile deformation of low-density Fe-Mn-Al-C austenitic steels at ambient temperature[J]. Scripta Materialia, 2013, 68(6): 375-379. [9] Zhao C, Song R B, Zhang L F, et al. Effect of annealing temperature on the microstructure and tensile properties of Fe-10Mn-10Al-0.7C low-density steel[J]. Materials and Design, 2016, 91: 348-360. [10] Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity I[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(6): 1239-1263. [11] Kubin L P, Mortensen A. Geometrically necessary dislocations and strain gradient plasticity: A few critical issues[J]. Scripta Materialia, 2003, 48(2): 119-125. [12] 唐远寿, 司 宇, 徐正萌,等. 超高强度钢在汽车轻量化中的应用及研究进展[J]. 金属热处理, 2023, 48(10): 247-254. Tang Yuanshou, Si Yu, Xu Zhengmeng, et al. Application and research progress of ultra-high strength steel in automotive lightweight[J]. Heat Treatment of Metals, 2023, 48(10): 247-254. [13] 曹中玉, 贾华坡, 赵保伟. 两相区退火温度对汽车用0.2C-8Mn-2Al钢组织与力学性能的影响[J]. 金属热处理, 2024, 49(9): 247-250. Cao Zhongyu, Jia Huapo, Zhao Baowei. Effect of intercritical annealing temperature on microstructure and mechanical properties of 0.2C-8Mn-2Al steel for auto[J]. Heat Treatment of Metals, 2024, 49(9): 247-250. [14] Liu D G, Ding H, Cai M H, et al. Mechanical behaviors of a lower-Mn-added Fe-11Mn-10Al-1.25C lightweight steel with distinguished microstructural features[J]. Materials Letters, 2019, 242: 131-134. [15] Yoo J D, Park K T. Microband-induced plasticity in a high Mn-Al-C light steel[J]. Materials Science and Engineering A, 2008, 496(1/2): 417-424. [16] Feng Y F, Song R B, Wang Y J, et al. The synergistic effect of deformation twins and polycrystalline structure on strain hardening in a high-SFE Fe-Mn-Al-C austenitic cast steel in compression[J]. Materials Letters, 2020, 272: 127814. |