[1] 储双杰, 毛 博, 胡广魁. 汽车用先进高强度冷轧双相钢的显微组织调控和强韧化机理[J]. 金属学报, 2022, 58(4): 551-566. Chu Shuangjie, Mao Bo, Hu Guangkui. Microstructure control and strengthening mechanism of high strength cold rolled dual phase steels for automobile applications[J]. Acta Metallurgica Sinica, 2022, 58(4): 551-566. [2] 谭大庆, 周 莉, 贾国翔, 等. 汽车底盘用高强度复相钢HR680/800CP的开发与应用[J]. 钢铁钒钛, 2023, 44(4): 167-172. Tan Daqing, Zhou Li, Jia Guoxiang, et al. Development and application of high strength complex phase steel HR680/800CP for automobile chassis[J]. Iron Steel Vanadium Titanium, 2023, 44(4): 167-172. [3] 方 超, 吴秋云, 潘红波, 等. Nb元素及退火温度对双相钢组织性能的影响[J]. 材料热处理学报, 2023, 44(3): 106-114. Fang Chao, Wu Qiuyun, Pan Hongbo, et al. Effects of Nb element and annealing temperature on microstructure and properties of dual phase steel[J]. Transactions of Materials and Heat Treatment, 2023, 44(3): 106-114. [4] 刘鹏飞, 关 琳, 刘 建, 等. 退火工艺对低成本980 MPa级冷轧双相钢组织和性能的影响[J]. 金属热处理, 2024, 49(3): 122-127. Liu Pengfei, Guan Lin, Liu Jian, et al. Effect of annealing process on structure and properties of a low cost 980 MPa cold-rolled dual-phase steel[J]. Heat Treatment of Metals, 2024, 49(3): 122-127. [5] 叶 青. 双相钢的铁素体晶粒尺寸控制及其对力学性能和氢扩散性能的影响[J]. 钢铁钒钛, 2022, 43(5): 166-170. Ye Qing. Ferrite grain size control of dual phase steel and its effect on mechanical properties and hydrogen diffusion properties[J]. Iron Steel Vanadium Titanium, 2022, 43(5): 166-170. [6] 陈 庆. 淬火温度对马氏体/铁素体双相钢组织性能的影响[J]. 冶金分析, 2018, 38(10): 63-67. Chen Qing. Effects of quenching temperature on the microstructure and properties of martensite/ferrite dual phase steel[J]. Metallurgical Analysis, 2018, 38(10): 63-67. [7] 韩伟伟, 刘清友, 贾书君, 等. 回火温度对低合金双相钢的组织和力学性能的影响[J]. 金属热处理, 2013, 38(4): 74-78. Han Weiwei, Liu Qingyou, Jia Shujun, et al. Influence of tempering temperature on microstructure and mechanical properties of low alloy dual phase steel[J]. Heat Treatment of Metals, 2013, 38(4): 74-78. [8] Das D, Chattopadhyay P P. Influence of martensite morphology on the work-hardening behavior of high strength ferrite-martensite dual-phase steel[J]. Journal of Materials Science, 2009, 44(11): 2957-2965. [9] Erdogan M. The Effect of new ferrite content on the tensile fracture behaviour of dual phase steels[J]. Journal of Materials Science, 2002, 37(17): 3623-3630. [10] Lee S, Kim S, Hwang B, et al. Effect of carbide distribution on the fracture toughness in the transition temperature region of an SA 508 steel[J]. Acta Materialia, 2002, 50(19): 4755-4762. [11] 于庆波, 赵贤平, 孙 斌, 等. 高层建筑用钢板的屈强比[J]. 钢铁, 2007, 42(11): 74-78. Yu Qingbo, Zhao Xianping, Sun Bin, et al. Yield-strength ratio of the tested steel plate for high-rise building[J]. Iron and Steel, 2007, 42(11): 74-78. [12] 孔维宾, 秦 华, 连景宝, 等. 调质态2.25Cr-1Mo-0.25V钢的显微组织与电化学腐蚀性能[J]. 金属热处理, 2017, 42(2): 58-61. Kong Weibin, Qin Hua, Lian Jingbao, et al. Microstructure and electrochemical corrosion resistance of quenched and tempered 2.25Cr-1Mo-0.25V steel[J]. Heat Treatment of Metals, 2017, 42(2): 58-61. |