[1] Hu Z C, Liu B, Wang L, et al. Research progress of failure mechanism of thermal barrier coatings at high temperature via finite element method[J]. Coatings, 2020, 10(8): 7-32. [2] Thakare J G, Pandey C, Mahapatra M M, et al. Thermal barrier coatings—A state of the art review[J]. Metals and Materials International, 2021, 27: 1947-1968. [3] Lashmi P G, Ananthapadmanabhan P V, Unnikrishnan G, et al. Present status and future prospects of plasma sprayed multilayered thermal barrier coating systems[J]. Journal of the European Ceramic Society, 2020, 40(8): 2731-2745. [4] Chen W R, Wu X, Patnaik P C, et al. TGO growth behaviour in TBCs with APS and HVOF bond coats[J]. Surface and Coatings Technology, 2008, 202(12): 2677-2683. [5] Yadav M J, Jinoop A N, Danduk C, et al. Laser shock processing: Process physics, parameters, and applications[J]. Materials Today: Proceedings, 2017, 4(8): 7921-7930. [6] Hua Y, Rong Z, Ye Y, et al. Laser shock processing effects on isothermal oxidation resistance of GH586 superalloy[J]. Applied Surface Science, 2015, 330: 439-444. [7] 徐 硕, 苏波泳, 花国然, 等. 激光冲击强化对TC4钛合金表面TiN涂层界面结合性能的影响[J]. 表面技术, 2022, 51(3): 315-325. Xu Shuo, Su Boyong, Hua Guoran, et al. Effect of laser shock peening on the interfacial bonding properties of TiN coatings on TC4 titanium alloy[J]. Surface Technology, 2022, 51(3): 315-325. [8] Yu Q, Cen L, Wang Y. Numerical study of residual stress and crack nucleation in thermal barrier coating system with plane model[J]. Ceramics International, 2018, 44(5): 5116-5123. [9] 刘 扬, 全昌彪, 杨晓光, 等. TGO非均匀增长对热障涂层应力演化和破坏机理的影响[J]. 航空动力学报, 2020, 35(6): 1140-1148. Liu Yang, Quan Changbiao, Yang Xiaoguang, et al. Effect of non-uniform growth of TGO on stress development and failure mechanism of thermal barrier coatings[J]. Journal of Aerospace Power, 2020, 35(6): 1140-1148. [10] Zhou C, Wang N, Xu H. Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings[J]. Materials Science and Engineering A, 2007, 452: 569-574. [11] Wei Z Y, Chai Y J, Yi P, et al. Stress profile and crack evolution in a three-dimensional (3D) thermal barrier coatings during isothermal cyclic test[J]. Ceramics International, 2022, 48(20): 30606-30620. [12] Wei Z Y, Cai H N, Tahir A, et al. Stress states in plasma-sprayed thermal barrier coatings upon temperature cycling: combined effects of creep, plastic deformation, and TGO growth[J]. Ceramics International, 2019, 45(16): 19829-19844. [13] Ranjbar-Far M, Absi J, Mariaux G, et al. Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method[J]. Materials and Design, 2010, 31(2): 772-781. [14] 王瑞涵, 花银群, 叶云霞, 等. 激光冲击金属黏结层高温热循环应力演化规律的有限元模拟[J]. 表面技术, 2024, 53(1): 123-134. Wang Ruihan, Hua Yinqun, Ye Yunxia, et al. Finite element simulation of the stress evolution of the laser shock peening metallic bond coat in high temperature thermal cycles[J]. Surface Technology, 2024, 53(1): 123-134. [15] Jiang J S, Xu B Q, Wang W Z, et al. Finite element analysis of the effects of thermally grown oxide thickness and interface asperity on the cracking behavior between the thermally grown oxide and the bond coat[J]. ASME Journal of Engineering for Gas Turbines and Power, 2017, 139: 022504. [16] 李佐君, 梁 伟, 钟舜聪, 等. TGO及初始裂纹对热障涂层裂纹形核与扩展影响的有限元分析[J]. 失效分析与预防, 2021, 16(5): 300-308. Li Zuojun, Liang Wei, Zhong Shuncong, et al. Influence of TGO and initial crack on crack nucleation and propagation in thermal barrier coatings based on finite element analysis[J]. Failure Analysis and Prevention, 2021, 16(5): 300-308. [17] Wei Z Y, Cai H N. Comprehensive effects of TGO growth on the stress characteristic and delamination mechanism in lamellar structured thermal barrier coatings[J]. Ceramics International, 2020, 46(2): 2220-2237. [18] 王铁军, 范学领, 孙永乐, 等. 重型燃气轮机高温透平叶片热障涂层系统中的应力和裂纹问题研究进展[J]. 固体力学学报, 2016, 37(6): 477-517. Wang Tiejun, Fan Xueling, Sun Yongle, et al. The stresses and cracks in thermal barrier coating system: A review[J]. Chinese Journal of Solid Mechanics, 2016, 37(6): 477-517. |