[1] 张英伟, 白建强, 白占桥, 等. P91钢管的长期高温服役组织与性能[J]. 金属热处理, 2024, 49(9): 43-46. Zhang Yingwei, Bai Jianqiang, Bai Zhanqiao, et al. Microstructure and properties of steel pipe in long-term high temperature service[J]. Heat Treatment of Metals, 2024, 49(9): 43-46. [2] 熊 伟, 戴志勇. 固溶处理对50Cr-50Ni合金组织与性能的影响[J]. 金属热处理, 2024, 49(9): 260-265. Xiong Wei, Dai Zhiyong. Effect of solution treatment on microstructure and properties of 50Cr-50Ni alloy[J]. Heat Treatment of Metals, 2024, 49(9): 260-265. [3] Xin Z, Chengbin S, Huai Z, et al. Solidification characteristics and eutectic precipitates in 15Cr-22Ni-1Nb austenitic heat-resistant stainless steel[J]. Metallurgical and Materials Transactions B, 2023, 54(5): 2302-2319. [4] 麻永林, 白庆伟, 邢淑清, 等. 12NiCrMo压力容器钢的高温力学性能[J]. 金属热处理, 2015, 40(8): 63-67. Ma Yonglin, Bai Qingwei, Xing Shuqing, et al. High temperature mechanical properties of 12NiCrMo pressure vessel steel[J]. Heat Treatment of Metals, 2015, 40(8): 63-67. [5] Taherinia A, Eslami A, Golozar A M, et al. High-temperature creep analysis of carbon steel A516-Gr70 used in thin-walled pressure vessels under different loads at constant temperature[J]. Arabian Journal for Science and Engineering, 2024, 49(11): 15667-15677. [6] 温玉磊, 杨后雷, 王 菲, 等. PCrNi3MoV钢奥氏体晶粒细化工艺[J]. 金属热处理, 2019, 44(9): 212-215. Wen Yulei, Yang Houlei, Wang Fei, et al. Austenitic grain refining process of PCrNi3MoV steel[J]. Heat Treatment of Metals, 2019, 44(9): 212-215. [7] 刘涵赜, 王浩强, 张彩红, 等. PCrNi3MoV钢改善晶粒度的热处理工艺研究[J]. 金属加工(热加工), 2022(9): 71-74. Liu Hanze, Wang Haoqiang, Zhang Caihong, et al. Study on heat treatment process for improving grain size of PCrNi3MoV steel[J]. MW Metal Forming, 2022(9): 71-74. [8] 马 潇, 徐 乐, 王毛球, 等. 25Cr3Mo3NiNbZr钢热变形行为及微观组织研究[J]. 热加工工艺, 2019, 48(19): 23-29. Ma Xiao, Xu Le, Wang Maoqiu, et al. Study on hot deformation behavior and microstructure of 25Cr3Mo3NiNbZr steel[J]. Hot Working Technology, 2019, 48(19): 23-29. [9] 卢茂勇, 徐 乐, 李 浩, 等. Ti微合金化对25Cr3Mo3NiNbZr钢碳化物析出行为和高温强度的影响[J]. 金属热处理, 2023, 48(11): 29-37. Lu Maoyong, Xu Le, Li Hao, et al. Effect of Ti microalloying on carbide precipitation behavior and high temperature strength of 25Cr3Mo3NiNbZr steel[J]. Heat Treatment of Metals, 2023, 48(11): 29-37. [10] Zhu X K, Joyce J A. Review of fracture toughness(G, K, J, CTOD, CTOA)testing and standardization[J]. Engineering Fracture Mechanics, 2012(85): 1-46. [11] Metalsalloys R R. Applications Related Phenomena in Titanium Alloys[M]. New York: American Society for Testing and Materials, 1968. [12] Richards N L. Quantitative evaluation of fracture toughness-microstructural relationships in alpha-beta titanium alloys[J]. Journal of Materials Engineering and Performance, 2004, 13(2): 218-225. [13] Mine Y, Ando S, Takashima K. Crystallographic fatigue crack growth in titanium single crystals[J]. Materials Science and Engineering A, 2011, 528(25/26): 7570-7578. [14] Zhu M L, Xuan F Z, Wang G Z. Effect of microstructure on fatigue crack propagation behavior in a steam turbine rotor steel[J]. Materials Science and Engineering A, 2009, 515(1/2): 85-92. [15] Benedetti M. Comparison of the fatigue crack propagation resistance of α+β and β titanium alloys[J]. Key Engineering Materials, 2008, 24(378/379): 117-130. [16] Zhang L N, Wang P, Dong J X, et al. Microstructures' effects on high temperature fatigue failure behavior of typical superalloys[J]. Materials Science and Engineering A, 2013, 587: 168-178. [17] Fleck N A, Kang K J, Ashby M F. Overview no. 112: The cyclic properties of engineering materials[J]. Acta Metallurgica et Materialia, 1994, 42(2): 365-381. |