[1] 林乙丑, 张彦敏, 张广威, 等. 1.25Cr0.5MoSiNb钢过冷奥氏体连续冷却转变[J]. 材料热处理学报, 2021, 42(1): 119-125. Lin Yichou, Zhang Yanmin, Zhang Guangwei, et al. Continuous cooling transformation of supercooled austenite of 1.25Cr0.5MoSiNb steel[J]. Transactions of Materials and Heat Treatment, 2021, 42(1): 119-125. [2] 刘艳丽, 安治国. 一种碳锰曲轴钢的奥氏体连续冷却转变规律[J]. 物理测试, 2019, 37(1): 5-8. Liu Yanli, An Zhiguo. Austenite continuous cooling transformation law of a C-Mn crankshaft steel[J]. Physics Examination and Testing, 2019, 37(1): 5-8. [3] 王云龙, 陈银莉, 余 伟. 不同形变条件下非调质钢45MnSiVSQ的连续冷却转变[J]. 金属热处理, 2020, 45(12): 13-18 Wang Yunlong, Chen Yinli, Yu Wei. Continuous cooling transformation of non-quenched and tempered 45MnSiVSQ steel under different deformation conditions[J]. Heat Treatment of Metals, 2020, 45(12): 13-18. [4] Caballero F G, Allain S, Cornide J, et al. Design of cold rolled and continuous annealed carbide-free bainitic steels for automotive application[J]. Materials & Design, 2013, 49: 667-80. [5] Xu N, Wang L Y, Hu J, et al. Enhancing the yield strength of intercritically annealed Q&P steel via bainite-based quenching and partitioning treatment[J]. Journal of Materials Research and Technology, 2023, 27: 3996-4004. [6] Li J H, Chen P, Xu N, et al. Improving strength and ductility via ausforming combined with austempering through deformation-induced bainite refinement[J]. Journal of Materials Research and Technology, 2024, 30: 5746-5756. [7] Garcia-Mateo C, Caballero F G, Bhadeshia H K D H. Development of hard bainite[J]. ISIJ International, 2003, 43: 1238-1243. [8] Caballero F G, Bhadeshia H K D H. Very strong bainite[J]. Current Opinion in Solid State & Materials Science, 2004, 8: 251-257. [9] Carlos G, Francisca G C. The role of retained austenite on tensile properties of steels with bainitic microstructures[J]. Materials Transactions, 2005, 46: 1839-1846. [10] He J G, Zhao A M, Zhi C, et al. Acceleration of nanobainite transformation by multi-step ausforming process[J]. Scripta Materialia, 2015, 107: 71-74. [11] Yang H S, Bhadeshia H K D H. Designing low carbon, low temperature bainite[J]. Materials Science and Technology, 2013, 24: 335-342. [12] Wang X L, Wu K M, Hu F, et al. Multi-step isothermal bainitic transformation in medium-carbon steel[J]. Scripta Materialia, 2014, 74: 56-59. [13] Zhao L, Qian L, Meng J, et al. Below-Ms austempering to obtain refined bainitic structure and enhanced mechanical properties in low-C high-Si/Al steels[J]. Scripta Materialia, 2016, 112: 96-100. [14] Zhao L, Qian L, Zhou Q, et al. The combining effects of ausforming and below-Ms or above-Ms austempering on the transformation kinetics, microstructure and mechanical properties of low-carbon bainitic steel[J]. Materials & Design, 2019, 183: 108-123. [15] Kaikkonen P, Ghosh S, Somani M, et al. Nanostructured bainite transformation characteristics in medium-carbon steel subjected to ausforming and isothermal holding below martensite start temperature[J]. Journal of Materials Research and Technology, 2023, 23: 466-490. [16] 于林然, 刘 赓, 杨卓越, 等. 奥氏体化温度对空冷条件下40CrMnSi2Mo钢组织与力学性能的影响[J]. 金属热处理, 2024, 49(12): 1-8. Yu Linran, Liu Geng, Yang Zhuoyue, et al. The effect of austenitization temperature on the microstructure and mechanical properties of 40CrMnSi2Mo steel under air cooling conditions[J]. Heat Treatment of Metals, 2024, 49(12): 1-8. [17] Tomita Y, Okabayashi K. Mechanical properties of 0.40 pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite[J]. Metallurgical Transactions A, 1985, 16(1): 73-82. [18] Tomita Y, Okawa T. Effect of modified heat treatment on mechanical properties of 300M steel[J]. Materials Science and Technology, 1995, 11(3): 245-251. [19] 方鸿生, 冯 春, 郑燕康, 等. 新型 Mn 系空冷贝氏体钢的创制与发展[J]. 热处理, 2008, 23(3): 2-19. Fang Hongsheng, Feng Chun, Zheng Yankang, et al. Creation and development of novel Mn series air cooled bainitic steels[J]. Heat Treatment, 2008, 23(3): 2-19. [20] 高古辉, 桂晓露, 谭谆礼, 等. Mn-Si-Cr系无碳化物贝氏体/马氏体复相高强钢的研究进展[J]. 材料导报, 2017, 31(21): 74-81. Gao Guhui, Gui Xiaolu, Tan Zhunli, et al. Carbide-free bainite/martensite multiphase high strength steels: A review[J]. Materials Reports, 2017, 31(21): 74-81. [21] Qian L H, Zhou Q, Zhang F C, et al. Microstructure and mechanical properties of a low carbon carbide-free bainitic steel co-alloyed with Al and Si[J]. Materials & Design, 2012, 39: 264-268. [22] Xiao N Y, Fei J J, Li M Y, et al. Design of cooling route for carbide-free bainitic rail steels and resultant microstructures and properties[J]. Materials Science and Engineering A, 2024, 89: 1145936. [23] 程 瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体: 综述[J]. 材料导报, 2023, 37(7): 120-131. Cheng Xuan, Gui Xiaolu, Gao Guhui. Retained austenite in advanced high strength steel: A review[J]. Materials Reports, 2023, 37(7): 120-131. [24] 张 伟, 刘华赛, 桑 贺, 等. 残余奥氏体对双相钢断裂失效性能的影响[J]. 塑性工程学报, 2023, 30(11): 185-193. Zhang Wei, Liu Huasai, Sang He, et al. The influence of retained austenite on the fracture failure performance of duplex steel[J]. Journal of Plastic Engineering, 2023, 30(11): 185-193. |