| [1]王宇宙, 董建新. 汽车发动机用气门材料的选择及研究进展[J]. 材料导报, 2016, 30(13): 87-93, 101. Wang Yuzhou, Dong Jianxin. Review on the selection and research of valve materials used in automobile engines[J]. Materials Reports, 2016, 30(13): 87-93, 101.
 [2]朱治愿, 蔡远飞, 隋 毅, 等. 内燃机排气阀用镍基高温合金热处理工艺研究[J]. 江苏科技大学学报(自然科学版), 2017, 31(6): 740-745.
 Zhu Zhiyuan, Cai Yuanfei, Sui Yi, et al. Heat treatment research of a Ni-based superalloy used as exhaust valves in internal combustion engines[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2017, 31(6): 740-745.
 [3]Khan M I, Khan M A, Shakoor A. A failure analysis of the exhaust valve from a heavy duty natural gas engine[J]. Engineering Failure Analysis, 2018, 85: 77-88.
 [4]Pillai R, Romedenne M, Haynes J A, et al. Oxidation behavior of candidate NiCr alloys for engine exhaust valves: Part I—Effect of minor alloying elements[J]. Oxidation of Metals, 2021, 95(1/2): 1-31.
 [5]高 洁, 薛 姣. 汽车发动机用气门材料的选择及研究进展[J]. 时代汽车, 2016(11): 27-28.
 Gao Jie, Xue Jiao. Selection and research progress of valve materials for automobile engines[J]. Auto Time, 2016(11): 27-28.
 [6]Benouali C, Nabil B M, Sayah T. Tribology in industry effect of the normal load on the friction and wear behaviour of nickel-based alloys Ni-Cr-B-Si-C-W[J]. Tribology in Industry, 2020, 42(4): 547-555.
 [7]曾 垚, 杨剑洪, 王 碧, 等. 节镍型奥氏体不锈钢的组织性能对比[J]. 金属热处理, 2020, 45(6): 163-166.
 Zeng Yao, Yang Jianhong, Wang Bi, et al. Comparison of microstructure and properties of low-nickel austenitic stainless steels[J]. Heat Treatment of Metals, 2020, 45(6): 163-166.
 [8]Toji A, Uehara T, Tsuyumu T. Reduced use of nickel in high-strength superalloy for exhaust engine valves[J]. Hitachi Metals Technical Review, 2014, 30: 14-19.
 [9]Heck K A, Zhou N, Kernion S J, et al. A new Co-free Ni-based alloy for gas turbine and exhaust valve applications[J]. Superalloys, 2020: 142-152.
 [10]胡 日. NCF3015气阀合金长期时效组织演变规律研究[D]. 鞍山: 辽宁科技大学, 2019.
 [11]Hawryluk M, Ziemba J, Zwierzchowski M, et al. Analysis of a forging die wear by 3D reverse scanning combined with SEM and hardness tests[J]. Wear, 2021(2): 203749.
 [12]植田茂紀. エンジンバルブ用材料技術の温故知新[J]. 電気製鋼, 2020, 91(1): 19-28.
 Shigeki U. Knowledge of material technologies for engine valves from studying the past[J]. Primetals Technologies, 2020, 91(1): 19-28.
 [13]大崎元嗣, 倉田征児, 植田茂紀. 排気バルブ用 Ni 基耐熱合金 NCF5015D の高温特性 (特集 自動車用部材)[J]. 電気製鋼, 2010, 81(2): 151-156.
 Mototsugu O, Seiji K, Shigeki U, et al. High temperature properties of heat-resistant nickel-based superalloy, NCF5015D, for exhaust valves[J]. Primetals Technologies, 2010, 81(2): 151-156.
 [14]晏尚华, 曹美姣, 李 宁, 等. 固溶温度对21-4N气阀钢组织与性能的影响[J]. 特钢技术, 2016, 22(4): 4-8.
 Yan Shanghua, Cao Meijiao, Li Ning, et al. Effect of solid solution temperature on microstructure and properties of 21-4N steel for gas valve[J]. Special Steel Technology, 2016, 22(4): 4-8.
 [15]张云飞, 赵英利, 嵇 爽, 等. 固溶+时效对节镍型高氮奥氏体不锈钢力学性能的影响[J]. 热加工工艺, 2022, 51(2): 126-129.
 Zhang Yunfei, Zhao Yingli, Ji Shuang, et al. Effects of solution+aging on mechanical properties of Ni-saving high nitrogen austenitic stainless steel[J]. Hot Working Technology, 2022, 51(2): 126-129.
 [16]蔡远飞. 内燃机排气阀用镍基合金组织性能及抗氧化性能研究[D]. 镇江: 江苏科技大学, 2018.
 [17]常金宝, 赵英利, 嵇 爽, 等. 固溶时效对节镍型高氮奥氏体不锈钢组织的影响[J]. 金属热处理, 2020, 45(2): 120-124.
 Chang Jinbao, Zhao Yingli, Ji Shuang, et al. Effect of solution treatment and aging on microstructure of low-nickel high nitrogen austenitic stainless steel[J]. Heat Treatment of Metals, 2020, 45(2): 120-124.
 [18]Frank R B. Age-hardenable superalloys[J]. Advanced Materials & Processes, 2005, 163(6): 37-42.
 [19]Hawryluk M, Gronostajski Z, Kaszuba M, et al. Wear mechanisms analysis of dies used in the process of hot forging a valve made of high nickel steel[J]. Archives of Metallurgy and Materials, 2018, 63(4): 1963-1974.
 [20]余式昌. 微合金化奥氏体气阀钢的组织和性能研究[D]. 南京: 东南大学, 2006.
 [21]Prasad M A, Pavithra E. Vacuum hot pressed novel 21-4N valve steel strengthened by Y-Ti-O through high-energy ball milling[J]. Journal of Materials Engineering and Performance, 2020, 29(12): 8080-8092.
 |