| [1]张清东, 张勃洋, 李 瑞, 等. 钢板微观表面质量控制理论与技术研究进展[J]. 机械工程学报, 2016, 52(10): 32-45. Zhang Qingdong, Zhang Boyang, Li Rui, et al. Advances in theory and technology for microscopic surface quality control of steel strip[J]. Journal of Mechanical Engineering, 2016, 52(10): 32-45.
 [2]秦玉荣. 钢材表面质量及智能检测发展综述[J]. 南钢科技与管理, 2020(2): 32-33.
 Qin Yurong. Steel surface quality and development of intelligent detection[J]. Technology and management of Nangang, 2020(2): 32-33.
 [3]侯登义. 高表面质量中厚钢板表面麻点缺陷的成因与预防措施[J]. 宽厚板, 2014, 20(5): 14-17.
 Hou Dengyi. Causes and preventive measures of surface pitting for high surface quality steel plat[J]. Wide and Heavy Plate, 2014, 20(5): 14-17.
 [4]马国金, 王雪松, 王 飞. 中厚板热处理表面质量缺陷分析与控制[J]. 中国冶金, 2018, 28(8): 60-62.
 Ma Guojin, Wang Xuesong, Wang Fei. Analysis and control of surface quality defects in heat treatment of heavy plate[J]. China Metallurgy, 2018, 28(8): 60-62.
 [5]Fukagawa T, Okada H, Maehara Y. Mechanism of red scale defect formation in Si-added hot-rolled steel sheets[J]. ISIJ International, 1994, 34(11): 906-911.
 [6]王松涛, 李 敏, 朱立新, 等. Si 含量对热轧板卷表面红色氧化铁皮的影响[J]. 热加工工艺, 2011, 40(16): 50-52.
 Wang Songtao, Li Min, Zhu Lixin, et al. effect of silicon content on red scale of hot rolling coil[J]. Hot Working Technology, 2011, 40(16): 50-52.
 [7]刘翊之, 杨才福, 柴 锋, 等. 高铜镍结构钢高温氧化层和内表层缺陷研究[J]. 材料科学与工艺, 2013, 21(6): 78-83.
 Liu Yizhi, Yang Caifu, Chai Feng, et al. Study on oxidation layer and interior surface defect under high temperature of high Cu-Ni structural steel[J]. Materials Science and Technology, 2013, 21(6): 78-83.
 [8]Okada H, Fukagawa T, Ishihara H, et al. Prevention of red scale formation during hot rolling of steels[J]. ISIJ International, 1995, 35(7): 886-891.
 [9]于 洋, 王 畅, 王 林, 等. 基于高温氧化特性的含 Si 钢红铁皮缺陷研究[J]. 轧钢, 2016, 33(2): 10-15.
 Yu Yang, Wang Chang, Wang Lin, et al. The red scale defect formation mechanism of contain Si steel based on its high temperature oxidation characteristics[J]. Steel Rolling, 2016, 33(2): 10-15.
 [10]孙 彬, 尤宏广, 郝明欣, 等. Fe-Si合金的高温氧化行为[J]. 沈阳大学学报(自然科学版), 2019, 31(4): 263-267.
 Sun Bin, You Hongguang, Hao Mingxin, et al. High temperature behavior of Fe-Si alloy[J]. Journal of Shenyang University(Natural Science), 2019, 31(4): 263-267.
 [11]Yuan Q, Xu G, Zhou M, et al. The effect of the Si content on the morphology and amount of Fe2SiO4 in low carbon steels[J]. Metals, 2016, 6(4): 94.
 [12]Suárez L, Rodríguez-Calvillo P, Houbaert Y, et al. Oxidation of ultra low carbon and silicon bearing steels[J]. Corrosion Science, 2010, 52(6): 2044-2049.
 [13]Asai T, Soshiroda T, Miyahara M. Influence of Ni impurity in steel on the removability of primary scale in hydraulic descaling[J]. ISIJ International, 1997, 37(3): 272-277.
 [14]陆关福, 顾建忠, 吴光亚. 少量 Ni, Cr元素对低碳钢氧化铁皮粘附性的影响[J]. 金属学报, 1985, 21(5): 31-36.
 Lu Guanfu, Gu Jianzhong, Wu Guangya. Effect of minor Ni or/and Cr contents on coherence of oxidized layer with low carbon steel substrate[J]. Acta Metallurgica Sinica, 1985, 21(5): 31-36.
 [15]Melfo W, Bolt H, Rijnders M, et al. Experimental study on primary scale formation and descalability on steels containing Ni and Ni+Si[J]. ISIJ International, 2013, 53(5): 866-873.
 |