| [1]刘 兵, 彭超群, 王日初, 等. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报, 2010, 20(9): 1705-1715. Liu Bing, Peng Chaoqun, Wang Richu, et al. Recent development and prospects for giant plane aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1705-1715.
 [2]方华婵, 陈康华, 巢 宏, 等. Al-Zn-Mg-Cu系超强铝合金的研究现状与展望[J]. 粉末冶金材料科学与工程, 2009, 14(6): 351-357.
 Fang Huachan, Chen Kanghua, Chao Hong, et al. Current research status and prospects of ultra strength Al-Zn-Mg-Cu aluminum alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14(6): 351-357.
 [3]Song R G, Dietzal W, Zhang B J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy[J]. Acta Materialia, 2004, 52(16): 4727-4743.
 [4]Robson J D, Prangnell P B. Modelling Al3Zr dispersoid precipitation in multicomponent aluminum alloys[J]. Materials and Engineering, 2002, 352(S1/2): 240-249.
 [5]Wang Gaosong, Zhao Zhihao, Zhang Yihang, et al. Effects of solution treatment on microstructure and mechanical properties of Al-9.0Zn-2.8Mg-2.5Cu-0.12Zr-0.03Sc alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(9): 2537-2542.
 [6]Fang Huachan, Chen Kanghua, Chen Xiang, et al. Effect of Cr, Yb and Zr additions on localized corrosion of Al-Zn-Mg-Cu alloy[J]. Corrosion Science, 2009, 51(12): 2872-2877.
 [7]Senkov O N, Shagiev M R, Senkova S V, et al. Precipitation of Al3(Sc, Zr) particles in an Al-Zn-Mg-Cu-Sc-Zr alloy during conventional solution heat treatment and its effect on tensile properties[J]. Acta Materialia, 2008, 56(15): 3723-3738.
 [8]葛丽丽, 程仁策, 吕正风, 等. Mn含量对Al-Mg合金板材组织与性能的影响[J]. 金属热处理, 2017, 42(5): 14-17.
 Ge Lili, Cheng Rence, Lü Zhengfeng, et al. Effects of Mn content on microstructure and mechanical properties of Al-Mg alloy plate[J]. Heat Treatment of Metals, 2017, 42(5): 14-17.
 [9]刘守法, 王晋鹏, 李凡国. Zr添加及热处理对Al-Zn-Mg-Cu合金组织与性能的影[J]. 金属热处理, 2018, 43(9): 27-30.
 Liu Shoufa, Wang Jinpeng, Li Fanguo. Effect of Zr addition and heat treatment on microstructure and mechanical properties of Al-Zn-Mg-Cu[J]. Heat Treatment of Metals, 2018, 43(9): 27-30.
 [10]王凯先, 尹登峰, 胡 婷, 等. 微量钪、锆对Al-Zn-Mg合金铸态组织演变的影响[J]. 金属热处理, 2019, 44(3): 50-57.
 Wang Kaixian, Yin Dengfeng, Hu Ting, et al. Influence of minor Sc and Zr on as-cast microstructure evolution of Al-Zn-Mg alloy[J]. Heat Treatment of Metals, 2019, 44(3): 50-57.
 [11]Wert J A, Paton N, Hamilton C, et al. Grain refinement in 7075 aluminum by thermomechanical processing[J]. Metallurgical Transactions A, 1981, 12(7): 1267-1276.
 [12]Kniplinig K E, Duand D C, David N Seidman. Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during aging at 450-600 ℃[J]. Acta Materialia, 2008, 56(6): 1182-1195.
 [13]Fang H C, Chen K H, Chen X, et al. Effect of Zr, Cr and Pr additions on microstructures and properties of ultra-high strength Al-Zn-Mg-Cu alloys[J]. Material Science and Engineering A, 2011, 528: 7606-7615.
 [14]张 茁, 陈康华, 方华婵. 微量Cr和Nb对Al-Zn-Mg-Cu-Zr合金力学性能和应力腐蚀性能的影响[J]. 中国有色金属学报, 2008, 18(6): 985-989.
 Zhang Zhuo, Chen Kanghua, Fang Huachan. Effects of trace Cr and Nb additions on mechanical properties and stress corroded cracking of Al-Zn-Mg-Cu-Zr aluminium alloy[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(6): 985-989.
 [15]He Yongdong, Zhang Xinming, Cao Zhiqiang. Effect of minor Cr, Mn, Zr, Ti and B on grain refinement of as-cast Al-Zn-Mg-Cu alloys[J]. Rare Metal Materials and Engineering, 2010, 39(7): 1135-1140.
 [16]Gao Tong, Zhang Yongrui, Liu Xiangfa. Influence of trace Ti on the microstructure, age hardening behavior and mechanical properties of an Al-Zn-Mg-Cu-Zr alloy[J]. Materials Science and Engineering A, 2014, 598(2): 293-298.
 |