[1] Murty K L, Charit I. Structural materials for Gen-IV nuclear reactors: Challenges and opportunities[J]. Journal of Nuclear Materials, 2008, 383(1/2): 189-195. [2] Bhattacharyya D, Yamamoto T, Wells P, et al. Microstructural changes and their effect on hardening in neutron irradiated Fe-Cr alloys[J]. Journal of Nuclear Materials, 2019, 519: 274-286. [3] Kimura A, Kasada R, Iwata N, et al. Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems[J]. Journal of Nuclear Materials, 2011, 417: 176-179. [4] Kern T, Staubli M, Scarlin B. The European efforts in material development for 650 degrees C USC power plants-COST522[J]. ISIJ International, 2002, 42(12): 1515-1519. [5] Klimiankou M, Lindau R, Möslang A, et al. TEM study of PM2000 steel[J]. Powder Metallurgy, 2005, 48(3): 277-287. [6] Shen Y Z, Zou T T, Zhang S, et al. Identification of oxide phases in oxide dispersion strengthened PM2000 steel[J]. ISIJ International, 2013, 53(2): 304-310. [7] Ukai S, Fujiwara M. Perspective of ODS alloys application in nuclear environments[J]. Journal of Nuclear Materials, 2002, 307: 749-757. [8] Okuda T, Fujiwara M. Dispersion behaviour of oxide particles in mechanically alloyed ODS steel[J]. Journal of Materials Science Letters, 1995, 14(22): 1600-1603. [9] Zinkle S J, Snead L L. Opportunities and limitations for ion beams in radiation effects studies: Bridging critical gaps between charged particle and neutron irradiations[J]. Scripta Materialia, 2018, 143: 154-160. [10] Zhao D, Li S, Wang X, et al. Proton irradiation induced defects in T92 steels: An investigation by TEM and positron annihilation spectroscopy[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 442: 59-66. [11] Ukai S, Nishida T, Okada H. Development of oxide dispersion strengthened ferritic steels for FBR core application[J]. Journal of Nuclear Science and Technology, 1997, 34(3): 256-263. [12] Saito J, Suda T, Yamashita S, et al. Void formation and microstructural development in oxide dispersion strengthened ferritic steels during electron-irradiation[J]. Journal of Nuclear Materials, 1998, 258: 1264-1268. [13] Russell K C. Phase instability under cascade damage irradiation[J]. Journal of Nuclear Materials, 1993, 206(2/3): 129-138. [14] Nelson R S, Hudson J A, Mazey D J. The stability of precipitates in an irradiation environment[J]. Journal of Nuclear Materials, 1972, 44(3): 318-330. [15] Martin G. Phase stability under irradiation: Ballistic effects[J]. Physical Review B, 1984, 30(3): 1429-1436. [16] Frost H J, Russell K C. Particle stability with recoil resolution[J]. Acta Metallurgica Sinica, 1982, 30(5): 953-960. [17] Mao Z, Xiong L Y, Liu S. The formation of the complex oxide in Ni-based alloy powder during mechanical milling and heat treatment[J]. Journal of Alloys and Compounds, 2021, 879: 160333. [18] Song P, Morrall D, Zhang Z X, et al. Radiation response of ODS ferritic steels with different oxide particles under ion-irradiation at 550 ℃[J]. Journal of Nuclear Materials, 2018, 502: 76-85. |