[1] Catalán N, Ramos-Moore E, Boccardo A, et al. Surface laser treatment of cast irons: A Review[J]. Metals, 2022, 12(4): 562. [2] Samar A R, Haytham E, Adel N. Metallographic investigation of laser-treated ductile iron surface with different laser heat inputs[J]. Ain Shams Engineering Journal, 2023, 14(10): 102189. [3] Veselý Z, Honnerová P, Hruška M, et al. Analysis of laser surface absorptivity modification for selective laser hardening[J]. International Journal of Thermal Sciences, 2024, 200: 108982. [4] 陈小明, 王海金, 周夏凉, 等. 激光表面改性技术及其研究进展[J]. 材料导报, 2018, 32(S1): 341-344. Chen Xiaoming, Wang Haijin, Zhou Xialiang, et al. Laser surface modification technology and research progress[J]. Materials Review, 2018, 32(S1): 341-344. [5] Babu D P. Status of laser transformation hardening of steels and its alloys: A review[J]. Emerging Materials Research, 2019, 8(2): 1-18. [6] Zhu H, Fu X, Fan S, et al. The conversion from a Gaussian-like beam to a flat-top beam in the laser hardening processing using a fiber coupled diode laser source[J]. Optics and Laser Technology, 2020, 125: 106028. [7] 刘春阁, 邱星武. 激光硬化表面处理技术及其应用现状[J]. 稀有金属与硬质合金, 2012, 40(1): 62-64. Liu Chunge, Qiu Xingwu. Laser hardening surface treatment and its present application[J]. Rare Metals and Cemented Carbides, 2012, 40(1): 62-64. [8] Karamimoghadam M, Rezayat M, Moradi M, et al. Laser surface transformation hardening for automotive metals: Recent progress[J]. Metals, 2024, 14(3): 339. [9] Wagh S V, Bhatt D V, Menghani J, et al. Investigations on effect of laser hardening process parameters on microhardness and tribological characteristics of cast iron using Taguchi technique[J]. International Journal of Modern Manufacturing Technologies, 2020, 12(1): 206-215. [10] Chen Z Y, Yu X D, Ding N, et al. Wear resistance enhancement of QT700-2 ductile iron crankshaft processed by laser hardening[J]. Optics and Laser Technology, 2023, 164: 109519. [11] Al-Sayed S R, Elshazli A M, Hussein A H A. Laser surface hardening of Ni-hard white cast iron[J]. Metals, 2020, 10(6): 795. [12] 李 刚, 相 珺, 况 军, 等. GCr15钢表面激光淬火的组织与性能[J]. 材料热处理学报, 2010, 31(4): 129-132. Li Gang, Xiang Jun, Kuang Jun, et al. Microstructure and properties of GCr15 steel treated by laser quenching[J]. Transactions of Materials and Heat Treatment, 2010, 31(4): 129-132. [13] Muthukumaran G, Babu P D. Metallurgical characterization of laser hardened, mechanically textured 2.5Ni-Cr-Mo low alloy steel and optimization using RSM[J]. Optics and Laser Technology, 2021, 141: 107126. [14] Moradi M, Arabi H, Shamsborhan M. Multi-objective optimization of high power diode laser surface hardening process of AISI 410 by means of RSM and desirability approach[J]. Optik, 2020, 202: 163619. [15] 崔永婷, 张克平, 孙步功, 等. 激光淬火工艺对小麦磨粉机磨辊表面硬度及磨损性能的影响[J]. 华南农业大学学报, 2020, 41(2): 126-132. Cui Yongting, Zhang Keping, Sun Bugong, et al. Effect of laser quenching process on surface hardness and wear performance of wheat grinder roller[J]. Journal of South China Agricultural University, 2020, 41(2): 126-132. [16] 张海光, 张壮雅, 万福平, 等. 基于熵权与响应面模型的DPVC工艺多目标优化[J]. 计算机集成制造系统, 2014, 20(8): 1887-1895. Zhang Haiguang, Zhang Zhuangya, Wan Fuping, et al. Multi-objective optimization for DPVC process based on entropy-weight and RSM[J]. Computer Integrated Manufacturing Systems, 2014, 20(8): 1887-1895. [17] GB/T 18683—2002, 钢铁件激光表面淬火[S]. [18] 郭勇胜, 王 鹏, 袁寿其, 等. 基于曲面响应分析的混流式多级泵优化设计[J]. 流体机械, 2022, 50(8): 22-29, 44. Guo Yongsheng, Wang Peng, Yuan Shouqi, et al. Optimization design of mixed flow multistage pump based on surface response analysis[J]. Fluid Machinery, 2022, 50(8): 22-29, 44. [19] 唐 亮, 王文健, 张亚龙, 等. 激光淬火工艺对QT700-2球墨铸铁表面硬度与硬化层深度的影响[J]. 机械工程材料, 2020, 44(5): 82-86. Tang Liang, Wang Wenjian, Zhang Yalong, et al. Effect of laser quenching process on surface hardness and hardened layer depth of QT700-2 ductile cast iron[J]. Materials for Mechanical Engineering, 2020, 44(5): 82-86. [20] Al-Sayed S R, Elgazzar H, Nofal A. A comparative study of laser fluence effect on surface modification and hardness profile of austempered ductile iron[J]. Journal of Materials Research and Technology, 2024, 31: 3189-3204. [21] 孔宪俊, 王明海, 王 奔, 等. 激光诱致温度场对38CrN3MoV淬火组织转变及性能影响研究[J]. 航空制造技术, 2019, 62(Z2): 52-58. Kong Xianjun, Wang Minghai, Wang Ben, et al. Effect of laser heating temperature field on 38CrNi3MoV quenching microstructure and properties[J]. Aeronautical Manufacturing Technology, 2019, 62(S2): 52-58. [22] 王 旭, 虞 钢, 何秀丽, 等. 扫描速度对CuCr合金激光表面快速熔凝改性层性能的影响[J]. 激光与光电子学进展, 2022, 59(1): 241-247. Wang Xu, Yu Gang, He Xiuli, et al. Effect of scanning speed on properties of laser surface remelting layer of CuCr alloy[J]. Laser and Optoelectronics Progress, 2022, 59(1): 241-247. [23] 杨仁人, 林英华, 彭龙生, 等. 连续高功率激光辐照对55号钢组织和硬度的影响[J]. 中国激光, 2023, 50(16): 163-174. Yang Renren, Lin Yinghua, Peng Longsheng, et al. Effect of continuous high-power laser irradiation on microstructure and hardness of 55 steel[J]. Chinese Journal of Lasers, 2023, 50(16): 163-174. [24] Barka N, Karganroudi S S, Fakir R, et al. Effects of laser hardening process parameters on hardness profile of 4340 steel spline—An experimental approach[J]. Coatings, 2020, 10(4): 342. [25] Wang Q T, Zeng X B, Chen C R, et al. Profile characterisation and response surface modelling of laser surface hardened Cr12 mould steel[J]. Procedia Manufacturing, 2019, 34: 168-176. [26] 姚梓萌, 李 言, 杨明顺, 等. 响应面法在单点增量成形质量控制多目标优化中的应用[J]. 机械科学与技术, 2017, 36(3): 409-416. Yao Zimeng, Li Yan, Yang Mingshun, et al. Multi-objective optimization of forming quality in single point incremental forming via response surface methodology[J]. Applied Mathematics and Mechanics, 2017, 36(3): 409-416. [27] 马逢时. 六西格玛管理统计指南[M]. 北京: 中国人民大学出版社, 2007. [28] Murakami R, Narita I, Miyahara H. Surface Microstructure and properties of nodular cast iron rapidly solidified by laser surface melting[J]. Materials Transactions, 2018, 59(9): 1465-1470. [29] Wang N Y, Han Y L, Sun Y R. Effect of normalizing pre-treatment on microstructure of laser hardened ductile iron[J]. Advanced Materials Research, 2011, 1165(189/193): 1146-1150. [30] 周显敏, 曾大新, 杨 伟, 等. 球墨铸铁与灰口铸铁激光表面硬化能力对比[J]. 金属热处理, 2024, 49(12): 229-236. Zhou Xianmin, Zeng Daxin, Yang Wei, et al. Comparison of laser surface hardening ability between nodular cast iron and gray cast iron[J]. Heat Treatment of Metals, 2024, 49(12): 229-236. [31] 张 娜, 刘 政, 李 刚. 扫描速度对球墨铸铁表面等离子束硬化组织和性能的影响[J]. 铸造技术, 2010, 31(2): 143-145. Zhang Na, Liu Zheng, Li Gang. Influence of scanning speed on plasma beam remelt-solidified layer's microstructure and performance of nodular cast iron[J]. Foundry Technology, 2010, 31(2): 143-145. |