[1] Li Z, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off[J]. Nature, 2016, 534: 227-230. [2] Ritchie R O. The conflicts between strength and toughness[J]. Nature Materials, 2011, 10(11): 817-822. [3] Caballero F G, Garcia-Mateo C, Miller M K. Design of novel bainitic steels: Moving from ultrafine to nanoscale structures[J]. JOM, 2014, 66(5): 747-755. [4] Zhang J, Yao L. A novel design to enhance the stability of local austenite and the volume fraction of retained austenite in a low-carbon Si-Mn QP steel[J]. Baosteel Technical Research, 2022, 16(1): 24-29. [5] Sun J, Wang H, Xu B, et al. Making low-alloyed steel strong and tough by designing a dual-phase layered structure[J]. Acta Materialia, 2022, 227: 117701. [6] He B B, Hu B, Yen H W, et al. High dislocation density-induced large ductility in deformed and partitioned steels[J]. Science, 2017, 357: 1029-1032. [7] Wang J, Yang Y, Yu J, et al. Fatigue life evaluation considering fatigue reliability and fatigue crack for FV520B-I in VHCF regime based on fracture mechanics[J]. Metals, 2020, 10(3): 371. [8] Pang J C, Li S X, Wang Z G, et al. General relation between tensile strength and fatigue strength of metallic materials[J]. Materials Science and Engineering A, 2013, 564: 331-341. [9] 王明明, 魏晨阳, 郭广顺, 等. 超高强度马氏体基钢强韧化及疲劳性能研究进展[J]. 材料热处理学报, 2023, 44(3): 17-27. Wang Mingming, Wei Chenyang, Guo Guangshun, et al. Research progress on strengthening, toughening and fatigue properties of ultra-high-strength martensitic-based steel[J]. Transactions of Materials and Heat Treatment, 2023, 44(3): 17-27. [10] Manigandan K, Srivatsan T S, Tammana D, et al. Influence of microstructure on strain-controlled fatigue and fracture behavior of ultra high strength alloy steel AerMet 100[J]. Materials Science and Engineering A, 2014, 601: 29-39. [11] Yang M, Gao C, Pang J, et al. High-cycle fatigue behavior and fatigue strength prediction of differently heat-treated 35CrMo steels[J]. Metals, 2022, 12(4): 688. [12] 周 磊, 宋亚南, 王海斗, 等. 超高周疲劳的影响因素及疲劳机理的研究进展[J]. 材料导报, 2017, 31(17): 84-89. Zhou Lei, Song Yanan, Wang Haidou, et al. Influencing factors and fatigue mechanism of ultra high cycle fatigue: An overview[J]. Materials Review, 2017, 31(17): 84-89. [13] Park J S, Kim S J. Effects of two-step austenitizing processes on hydrogen evolution, permeation, and cracking behaviors of ultra-high-strength martensitic steel[J]. Materials Science and Engineering A, 2022, 859: 144214. [14] Okayasu M, Sato K, Mizuno M, et al. Fatigue properties of ultra-fine grained dual phase ferrite/martensite low carbon steel[J]. International Journal of Fatigue, 2008, 30(8): 1358-1365. [15] Song Y, Yan P, Jiao L, et al. Numerical simulation of the effect of surface microgeometry and residual stress on conformal contact fretting fatigue crack initiation behavior[J]. Fatigue and Fracture of Engineering Materials and Structures, 2023, 46(8): 2798-2815. [16] 刘彦臣, 庞思勤, 王西彬, 等. 表面完整性对高强度钢疲劳寿命影响的试验研究[J]. 兵工学报, 2013, 34(6): 759-764. Liu Yanchen, Pang Siqin, Wang Xibin, et al. Experimental study on effect of surface integrity on high-strength steel fatigue life[J]. Acta Armamentarii, 2013, 34(6): 759-764. [17] 李伟康. 形变热处理-回火工艺对马氏体超高强度钢组织和性能的影响[D]. 秦皇岛: 燕山大学, 2022. [18] Miao H Y, Larose S, Perron C, et al. An analytical approach to relate shot peening parameters to Almen intensity[J]. Surface and Coatings Technology, 2010, 205(7): 2055-2066. [19] Zhang Y, Zhang K, Hu Z, et al. The synergetic effects of shot peening and laser-shot peening on the microstructural evolution and fatigue performance of a medium carbon steel[J]. International Journal of Fatigue, 2023, 166: 107246. [20] Gao Y H, Liu S Z, Hu X B, et al. A novel low cost 2000 MPa grade ultra-high strength steel with balanced strength and toughness[J]. Materials Science and Engineering A, 2019, 759: 298-302. [21] Jiang S, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J]. Nature, 2017, 544: 460-464. [22] Mosallam A, Medjaher K, Zerhouni N. Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction[J]. Journal of Intelligent Manufacturing, 2016, 27(5): 1037-1048. [23] Zhu S, Hao Y, Correia O A J, et al. Nonlinear fatigue damage accumulation and life prediction of metals: A comparative study[J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42(6): 1271-1282. [24] Wu Z R, Wang S Q, Yang X, et al. Fatigue life prediction for Ni-based superalloy GH4169 considering machined surface roughness and residual stress effects[J]. Journal of Theoretical and Applied Mechanics, 2021, 59(2): 215-226. [25] Zhang X, Liu F, Shen M, et al. Ultra-high-cycle fatigue life prediction of metallic materials based on machine learning[J]. Applied Sciences, 2023, 13(4): 2524. [26] Lv W, Ding B, Zhang K, et al. High-cycle fatigue crack growth in T-shaped tubular joints based on extended finite element method[J]. Buildings, 2023, 13(11): 2722. [27] Stopka K S, Yaghoobi M, Allison J E, et al. Microstructure-sensitive modeling of surface roughness and notch effects on extreme value fatigue response[J]. International Journal of Fatigue, 2023, 166: 107295. [28] Proudhon H, Li J, Wang F, et al. 3D simulation of short fatigue crack propagation by finite element crystal plasticity and remeshing[J]. International Journal of Fatigue, 2016, 82: 238-246. |