[1]何西扣, 刘正东, 王天剑, 等. 中国超超临界汽轮机转子耐热材料及锻件研制进展[J]. 中国冶金, 2023, 33(12): 1-11. He Xikou, Liu Zhengdong, Wang Tianjian, et al. Development progress of heat-resistant materials and forgings for ultra-supercritical steam turbine rotor in China[J]. China Metallurgy, 2023, 33(12): 1-11. [2]赵吉庆, 杨 钢, 赵 林, 等. 高性能9%~12%Cr转子钢发展现状及锻件国产化概况[J]. 汽轮机技术, 2021, 63(1): 71-76. Zhao Jiqing, Yang Gang, Zhao Lin, et al. Developing of high-performance 9%-12%Cr rotor steels and localization overview of forging used for steam turbine rotors[J]. Turbine Technology, 2021, 63(1): 71-76. [3]李 其, 陈正宗, 蒋新亮, 等. 9%~12%Cr高中压转子材料发展历程与工程化关键技术[J]. 钢铁, 2021, 56(2): 40-49. Li Qi, Chen Zhengzong, Jiang Xinliang, et al. Development and engineering manufacture technology of 9%-12%Cr high and medium pressure rotor material[J]. Iron & Steel, 2021, 56(2): 40-49. [4]周子年. 钢的组织遗传现象[J]. 金属热处理, 1982, 7(1): 37-46. [5]游 卫. 1000 MW超超临界高中压转子用10%Cr型材料的热处理[J]. 大型铸锻件, 2019(2): 40-42, 54. You Wei. Heat treatment of 10%Cr material used for 1000 MW ultra supercritical high and medium pressure rotors[J]. Heavy Casting and Forging, 2019(2): 40-42, 54. [6]顾剑锋, 韩利战, 李传维. 大型锻件晶粒细化热处理研究进展[J]. 金属热处理, 2019, 44(1): 7-12. Gu Jianfeng, Han Lizhan, Li Chuanwei. Research progress of grain refinement heat treatment for heavy forgings[J]. Heat Treatment of Metals, 2019, 44(1): 7-12. [7]王月乔, 李 其. 缓慢加热条件下2.25Cr1Mo0.25V钢晶粒细化工艺研究[J]. 大型铸锻件, 2018(6): 26-29. Wang Yueqiao, Li Qi. Research on grain refinement process of 2.25Cr1Mo0.25V steel under slow heating[J]. Heavy Casting and Forging, 2018(6): 26-29. [8]李 其, 阳 鹤, 房 鑫, 等. 珠光体转变在30Cr2Ni4MoV低压转子预备热处理工艺中的应用研究[J]. 大型铸锻件, 2017(6): 25-29, 37. Li Qi, Yang He, Fang Xin, et al. Application research on transition of pearlite in preparing heat treatment technical procedure of 30Cr2Ni4MoV low pressure rotor[J]. Heavy Casting and Forging, 2017(6): 25-29, 37. [9]姜运建, 王 庆, 郑相锋, 等. 9%~12%Cr钢在蠕变时效中析出相变化的研究[J]. 河北电力技术, 2010, 29(3): 1-5. Jiang Yunjian, Wang Qing, Zheng Xiangfeng, et al. Study on precipitated phase in creeping and aging of 9%-12%Cr steel[J]. Hebei Electric Power, 2010, 29(3): 1-5. |