[1] 殷朝辉, 蒋利军, 刘 蔚, 等. 氢能利用关键技术及发展现状[J]. 太阳能, 2024(7): 62-69. Yin Zhaohui, Jiang Lijun, Liu Yu, et al. Key technologies and current situation of hydrogen energy utilization[J]. Solar Energy, 2024(7): 62-69. [2] Zhou Y, Li R Y, Lv Z X, et al. Green hydrogen: A promising way to the carbon-free society[J]. Chinese Journal of Chemical Engineering, 2022, 43: 2-13. [3] Zhang J M, Li J. Revolution inrenewables: Integration of green hydrogen for a sustainable future[J]. Energies, 2024, 17(16): 4148. [4] Liu J J, Sun L, Yang J G, et al. Ti-Mn hydrogen storage alloys: From properties to applications[J]. RSC Advances, 2022, 12(55): 35744-35755. [5] Ma T, Gao L, Hu M, et al. Research progress of solid hydrogen storage materials[J]. Journal of Functional Materials, 2018, 49(4): 04001-04006. [6] 卢胤龙, 柳星宇, 钟 怡. 固态金属储氢技术在加氢站领域的应用及展望[J]. 上海煤气, 2022(4): 12-15. Lu Yinlong, Liu Xingyu, Zhong Yi. Application and prospect of solid metal hydrogen storage technology in hydrogen refueling station[J]. Shanghai Gas, 2022(4): 12-15. [7] 蒋利军. 加快固态储氢技术创新和应用[J]. Engineering, 2021, 7(6): 66-71. Jiang Lijun. Expediting the innovation and application of solid hydrogen storage technology[J]. Engineering, 2021, 7(6): 66-71. [8] Ye H, Xia B J, Wu W Q, et al. Effect of rare earth composition on the high-rate capability and low-temperature capacity of AB5-type hydrogen storage alloys[J]. Journal of Power Sources, 2002, 111(1): 145-151. [9] Chen M, Tan C, Jiang W B, et al. Influence of over-stoichiometry on hydrogen storage and electrochemical properties of Sm-doped low-Co AB5-type alloys as negative electrode materials in nickel-metal hydride batteries[J]. Journal of Alloys and Compounds, 2021, 867: 159111. [10] Gao Z J, Meng Q W, Zhang Y, et al. An alternative for the anode materials of nickel metal hydride batteries: An AB3-type La0.6Gd0.2Mg0.2Ni2.6Co0.3Al0.1 hydrogen storage alloy[J]. Dalton Transactions, 2020, 49(19): 6312-6320. [11] Wan C P, Zhao S Q, Wang H. Tuning phase structure and electrochemical hydrogen storage properties of A5B19-type La-Y-Ni-Mn-based superlattice alloys by partial Al substitution[J]. International Journal of Hydrogen Energy, 2024, 49: 51-58. [12] Zeng G, Zhai T T, Yuan Z M, et al. Effect of ball milling on the structure and electrochemical hydrogen storage properties of a RE-Mg-Ni alloy[J]. Intermetallics, 2024, 168: 108235. [13] 张凤霞, 谈 诚. 先进镍氢电池负极材料的研究进展[J]. 材料导报, 2023, 37(S2): 18-26. Zhang Fengxia, Tan Cheng. Research progress of advanced cathode electrode materials fornickel-metal hydride battery[J]. Materials Reports, 2023, 37(S2): 18-26. [14] Wang W F, Liu X X, Zhang L, et al. The electrochemical characteristics of AB4-type rare earth-Mg-Ni-based superlattice structure hydrogen storage alloys for nickel metal hydride battery[J]. Journal of Magnesium and Alloys, 2021, 9(6): 2039-2048. [15] Ding N, Liu D Y, Liu W Q, et al. Excellent kinetics and effective hydrogen storage capacity at low temperature of superlattice rare-earth hydrogen storage alloy by solid-phase treatment[J]. Journal of Physics and Chemistry of Solids, 2022, 161: 110402. [16] Jiang W Q, Chen Y J, Hu M R, et al. Rare earth-Mg-Ni-based alloys with superlattice structure for electrochemical hydrogen storage[J]. Journal of Alloys and Compounds, 2021, 887: 161381. [17] 苑慧萍, 李志念, 沈 浩, 等. 稀土储氢材料的研究进展[J]. 中国材料进展, 2023, 42(2): 98-104, 134. Yuan Huiping, Li Zhinian, Shen Hao, et al. Research progress of rare earth hydrogen storage materials[J]. Materials China, 2023, 42(2): 98-104, 134. [18] 何德林. Sm-Mg-Ni系超晶格合金的制备和储氢性能研究[D]. 秦皇岛: 燕山大学, 2022. He Delin. Study on the preparation and hydrogen storage properties of Sm-Mg-Ni based superlattice alloys[D]. Qinhuangdao: Yanshan University, 2022. [19] 应燕君. La-Mg-Ni系AB3.0-3.5型储氢合金结构与储氢性能研究[D]. 上海: 上海交通大学, 2012. Ying Yanjun. Studies on the structure and hydrogen storage properties of La-Mg-Ni system AB3.0-3.5 type alloys[D]. Shanghai: Shanghai Jiao Tong University, 2012. [20] Wang W, Zhang L, Rodríguez-Pérez I A, et al. A novel AB4-type RE-Mg-Ni-Al-based hydrogen storage alloy with high power for nickel-metal hydride batteries[J]. Electrochimica Acta, 2019, 317: 211-220. [21] 李 媛, 张 璐, 韩树民. 稀土-镁-镍系超晶格合金结构与储氢性能研究及进展[J]. 燕山大学学报, 2020, 44(3): 323-330. Li Yuan, Zhang Lu, Han Shumin. Development in structure and hydrogen storage properties of rare earth-magnesium-nickel-based super-lattice alloys[J]. Journal of Yanshan University, 2020, 44(3): 323-330. [22] Fang F, Chen Z L, Wu D Y, et al. Subunit volume control mechanism for dehydrogenation performance of AB3-type superlattice intermetallics[J]. Journal of Power Sources, 2019, 427: 145-153. [23] 张 旭, 王 利, 周淑娟, 等. AB3.3型La3-xYxNi9.1Mn0.5Al0.3(x=1.0~2.2)合金的储氢性能[J]. 金属功能材料, 2020, 27(5): 6-13. Zhang Xu, Wang Li, Zhou Shujuan, et al. Hydrogen storage properties of the AB3.3 type La3-xYxNi9.1Mn0.5Al0.3 (x=1.0~2.2) hydrogen storage alloy[J]. Metallic Functional Materials, 2020, 27(5): 6-13. [24] Zhao S Q, Wang H, Hu R Z, et al. Phase transformation and hydrogen storage properties of LaY2Ni10.5 superlattice alloy with single Gd2Co7-type or Ce2Ni7-type structure[J]. Journal of Alloys and Compounds, 2021, 868: 159254. [25] Wang W F, Wang Q, Su H H, et al. Enhanced cycling durability of A5B19-type single-phase La-Mg-Ni-based hydrogen storage alloy via turning the superlattice structure by Mg[J]. International Journal of Hydrogen Energy, 2024, 71: 741. [26] Tang R, Wei X D, Liu Y N, et al. Effect of the Sm content on the structure and electrochemical properties of La1.3-xSmxCaMg0.7Ni9(x=0-0.3) hydrogen storage alloys[J]. Journal of Power Sources, 2006, 155(2): 456-460. [27] Xin G B, Yuan H P, Yang K, et al. Investigation of the capacity degradation mechanism of La-Mg-Ca-Ni AB3-type alloy[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21261-21267. [28] Liu J J, Chen X Y, Xu J, et al. A new strategy for enhancing the cycling stability of superlattice hydrogen storage alloys[J]. Chemical Engineering Journal, 2021, 418: 129395. [29] Liu Y R, Yuan H P, Guo M, et al. Effect of Y element on cyclic stability of A2B7-type La-Y-Ni-based hydrogen storage alloy[J]. International Journal of Hydrogen Energy, 2019, 44(39): 22064-22073. [30] Guo M, Yuan H P, Liu Y R, et al. Effect of Sm on the cyclic stability of La-Y-Ni-based alloys and their comparison with RE-Mg-Ni-based hydrogen storage alloy[J]. International Journal of Hydrogen Energy, 2020, 46(10): 7342-7441. [31] 刘雯雯, 赖华生, 王玉香, 等. La/Y比对A2B7型La-Y-Ni储氢合金性能的影响[J]. 矿冶工程, 2023, 43(2): 149-153. Liu Wenwen, Lai Huasheng, Wang Yuxiang, et al. Effect of La/Y ratio on properties of A2B7 type La-Y-Ni hydrogen storage alloy[J]. Mining and Metallurgical Engineering, 2023, 43(2): 149-153. [32] Zhai T T, Yang T, Yuan Z M, et al. An investigation on electrochemical and gaseous hydrogen storage performances of as-cast La1-xPrxMgNi3.6Co0.4(x=0-0.4) alloys[J]. International Journal of Hydrogen Energy, 2014, 39(26): 14282-14287. [33] Liu J J, Qin C, Chen X Y, et al. Prolonging cycling life of AB3-type superlattice alloys by adjusting hydrogen absorption/desorption behaviors of [A2B4] and [AB5] subunits[J]. International Journal of Hydrogen Energy, 2024, 53: 946-957. [34] Denys R V, Yartys V A. Effect of magnesium on the crystal structure and thermodynamics of the La3-xMgxNi9 hydrides[J]. Journal of Alloys and Compounds, 2011, 509: 540-548. [35] Liu Y R, Yuan H P, Jiang L J, et al. Microstructure and gas-solid hydrogen storage properties of La1-xCexY2Ni10.95Mn0.45(x =0-0.75) alloys[J]. Journal of Alloys and Compounds, 2024, 976: 173069. [36] Xin G B, Yuan H P, Yang K, et al. Promising hydrogen storage properties of cost-competitive La(Y)-Mg-Ca-Ni AB3-type alloys for stationary applications[J]. RSC Advances, 2016, 6(26): 21742-21748. [37] Sun H F, Sheng P, Hou Z Y, et al. The study of La and Mg elements on the improved structure and hydrogen storage performance of Ca2MgNi9 alloy[J]. Journal of Alloys and Compounds, 2024, 1002: 174613. [38] Shtender V, Denys R, Paul-Boncour V, et al. Crystal structure, hydrogen absorption-desorption behavior and magnetic properties of the Nd3-xMgxCo9 alloys[J]. Journal of Alloys and Compounds, 2017, 695: 1426-1435. [39] He X C, Hu H Z, Tang R Z, et al. Effect of cobalt substitution for nickel on the microstructural evolution and hydrogen storage properties of La0.66Mg0.34Ni3.5-xCox alloys[J]. Journal of Rare Earths, 2024, 42(5): 930-939. [40] Zhao S Q, Wang H, Yang L C, et al. Modulating superlattice structure and cyclic stability of Ce2Ni7-type LaY2Ni10.5-based alloys by Mn, Al, and Zr substitutions[J]. Journal of Power Sources, 2022, 524: 231067. [41] Zhang A Z, Li R Y, Lu H, et al. Effects of Mn and Fe elements on the electrochemical hydrogen storage properties of the A5B19-type La-Y-Mg-Ni-Al alloy for nickel metal hydride battery[J]. Journal of Alloys and Compounds, 2024, 992: 174229. [42] Tang R, Liu Y N, Zhu C C. Effect of Al substitution for Co on the hydrogen storage characteristics of Ml0.8Mg0.2Ni3.2Co0.6-xAlx(x=0-0.6) alloys[J]. Intermetallics, 2006, 14(4): 361-366. [43] Young K, Ouchi T, Wang L, et al. The effects of Al substitution on the phase abundance, structure and electrochemical performance of La0.7Mg0.3Ni2.8Co0.5-xAlx(x = 0, 0.1, 0.2) alloys[J]. Journal of Power Sources, 2015, 279: 172-179. [44] Huang T Z, Yuan X X, Yu J M, et al. Effects of annealing treatment and partial substitution of Cu for Co on phase composition and hydrogen storage performance of La0.7Mg0.3Ni3.2Co0.35 alloy[J]. International Journal of Hydrogen Energy, 2011, 37(1): 1074-1079. [45] Zhang Y H, Yang T, Chen L C, et al. Electrochemical hydrogen storage performances of the Si added La-Mg-Ni-based A2B7-type electrode alloys for Ni/MH battery application[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2015, 30(1): 166-174. [46] 张 俊, 徐增勇, 张太超, 等. 热处理对新能源汽车用稀土储氢合金电化学性能的影响[J]. 金属热处理, 2019, 44(1): 49-53. Zhang Jun, Xu Zengyong, Zhang Taichao, et al. Effect of heat treatment on electrochemical properties of rare-earth hydrogen storage alloy for new energy vehicle[J]. Heat Treatment of Metals, 2019, 44(1): 49-53. [47] 刘黎黎, 闫慧忠, 曹 慧, 等. 热处理对A2B7型La0.6Sm0.15Nd0.1Mg0.15Ni3.4Al0.1贮氢合金微观结构和电化学性能的影响[J]. 稀土, 2016, 37(2): 117-122. Liu Lili, Yan Huizhong, Cao Hui, et al. Influence of heat treatment on microstructure and electrochemical properties of A2B7 La0.6Sm0.15Nd0.1Mg0.15Ni3.4Al0.1 hydrogen strange alloy[J]. Chinese Rare Earths, 2016, 37(2): 117-122. [48] 韩兴博, 杨小军, 王 培, 等. 热处理温度对LaNi3.8Al10Mn0.2合金储氢性能的影响[J]. 稀有金属材料与工程, 2016, 45(4): 821-828. Han Xingbo, Yang Xiaojun, Wang Pei, et al. Effect of annealing temperature on hydrogen storage properties of LaNi3.8Al10Mn0.2 alloy[J]. Rare Metal Materials and Engineering, 2016, 45(4): 821-828. [49] Hu W K, Kim D M, Jeon S W, et al. Effect of annealing treatment on electrochemical properties of Mm-based hydrogen storage alloys for Ni/MH batteries[J]. Journal of Alloys and Compounds, 1998, 270(1/2): 255-264. [50] 聂光辉, 魏垂泉. 热处理对新能源汽车用(La0.7Mg0.3)Nix合金储氢特性的影响研究[J]. 热加工工艺, 2021, 50(24): 39-42. Nie Guanghui, Wei Chuiquan. Influence of heat treatment on hydrogen storage properties of(La0.7Mg0.3)Nix alloy for new energy vehicles[J]. Hot Working Technology, 2021, 50(24): 39-42. [51] 卿培林, 李文慧, 赖赵芳, 等. 退火对LaNi2.7Mn0.3Co0.5合金储氢性能及电化学性能的影响[J]. 材料热处理学报, 2019, 40(8): 91-95. Qing Peilin, Li Wenhui, Lai Zhaofang, et al. Effects of annealing treatment on hydrogen-storage and electrochemical properties of LaNi2.7Mn0.3Co0.5 alloy[J]. Transactions of Materials and Heat Treatment, 2019, 40(8): 91-95. [52] 苑慧萍, 李志念, 赵旭山, 等. 热处理对Nd-Mg-Ni储氢合金结构和性能的影响[J]. 稀有金属, 2013, 37(3): 341-347. Yuan Huiping, Li Zhinian, Zhao Xushan, et al. Effect of heat treatment on structure and properties of Nd-Mg-Ni-system hydrogen storage electrode alloys[J]. Chinese Journal of Rare Metals, 2013, 37(3): 341-347. [53] Zhao Y M, Han S M, Li Y, et al. Structural phase transformation and electrochemical features of La-Mg-Ni-based AB4-type alloys[J]. Electrochimica Acta, 2016, 215: 142-149. [54] Xiong W, Yan H Z, Wang L, et al. Effects of annealing temperature on the structure and properties of the LaY2Ni10Mn0.5 hydrogen storage alloy[J]. International Journal of Hydrogen Energy, 2017, 42(22): 15319-15327. [55] Wang L, Zhou S J, Zhang X, et al. Insights into the structure-performance relationship in La-Y-Ni-based hydrogen storage alloys[J]. International Journal of Hydrogen Energy, 2023, 48(66): 25797-25807. [56] Zhang X, Zhao Y Y, Zhou S J, et al. Preparation and hydrogen storage properties of single-phase Ce2Ni7-type La-Sm-Y-Ni based hydrogen storage alloy[J]. International Journal of Hydrogen Energy, 2023, 48(20): 7181-7191. [57] Zhang L, Ding Y Q, Zhao Y M, et al. Phase structure and cycling stability of A2B7 superlattice La0.60Sm0.15Mg0.25Ni3.4 metal hydride alloy[J]. International Journal of Hydrogen Energy, 2016, 41(3): 1791-1800. |