[1] Zhao H, Wang P, Li J. Effect of vanadium content on hydrogen embrittlement of 1400 MPa grade high strength bolt steels[J]. International Journal of Hydrogen Energy, 2021, 46(70): 34983-34997. [2] Loannidou C, Navarro-López A, Dalgliesh R M, et al. Phase-transformation and precipitation kinetics in vanadium micro-alloyed steels by in-situ, simultaneous neutron diffraction and SANS[J]. Acta Materialia, 2021, 220: 117317. [3] 商兴国, 李 敬, 苑少强, 等. 调质处理对35CrMo钢捣固镐组织和力学性能的影响[J/OL]. 热加工工艺, 2023. DOI:10.14158/j.cnki.1001-3814.20212055. Shang Xingguo, Li Jing, Yuan Shaoqiang, et al. Effects of quenching-tempering process on microstructures and mechanical properties of tamping tine made of 35CrMo steel[J/OL]. Hot Working Technology, 2023. DOI:10.14158/j.cnki.1001-3814.20212055. [4] 李天怡, 陈义冕, 马国强, 等. Nb、V微合金化对高强管线钢相析出及强度的影响[J]. 鞍钢技术, 2023(6): 64-70, 83. Li Tianyi, Chen Yimian, Ma Guoqiang, et al. Effect of microalloying by adding Nb and V on phase precipitation behaviors and strengths of high strength pipeline steels[J]. Angang Technology, 2023(6): 64-70, 83. [5] 杨雄飞, 于 浩. 微合金化TRIP型退火马氏体钢氢渗透行为研究[J]. 钢铁钒钛, 2019, 40(4): 126-131. Yang Xiongfei, Yu Hao. Hydrogen permeation behaviors of microalloyed trip-assisted annealed martensitic steels[J]. Iron Steel Vanadium Titanium, 2019, 40(4): 126-131. [6] Cheng X, Cheng X, Jiang C, et al. Hydrogen diffusion and trapping in V-microalloyed mooring chain steels[J]. Materials Letters, 2018, 213: 118-121. [7] Williamson G, Hall W. X-ray line broadening from field aluminium and wolfram[J]. Acta Metallurgica, 1953, 1(1): 22-31. [8] 周 浩, 王 云, 曾燕屏. 高温回火P91钢显微组织演变及再结晶机理[J]. 金属热处理, 2023, 48(11): 38-44. Zhou Hao, Wang Yun, Zeng Yanping. Effect of high-temperature tempering on microstructure evolution and recrystallization mechanism of P91 steel[J]. Heat Treatment of Metals, 2023, 48(11): 38-44. [9] 车马俊, 周生璇, 杜晓洁, 等. 回火温度对EH890海洋工程用钢耐蚀性能的影响[J]. 金属热处理, 2022, 47(10): 147-153. Che Majun, Zhou Shengxuan, Du Xiaojie, et al. Influence of tempering temperature on corrosion resistance of EH890 marine engineering steel[J]. Heat Treatment of Metals, 2022, 47(10): 147-153. [10] 王兆丰, 程晓英, 李晓亮, 等. 回火温度对含V, Nb高强度低合金钢氢脆敏感性的影响[J]. 金属热处理, 2023, 48(3): 12-18. Wang Zhaofeng, Cheng Xiaoying, Li Xiaoliang, et al. Effect of tempering temperature on hydrogen embrittlement sensitivity of a high strength low alloy steel containing V and Nb[J]. Heat Treatment of Metals, 2023, 48(3): 12-18. [11] Dadfarnia M, Martin M L, Nagao A, et al. Modeling hydrogen transport by dislocations[J]. Journal of the Mechanics and Physics of Solids, 2015, 78: 511-525. [12] 王 贞, 刘 静, 黄 峰, 等. 回火温度对DP600钢氢扩散及氢脆敏感性的影响[J]. 金属热处理, 2021, 46(2): 87-94. Wang Zhen, Liu Jing, Huang Feng, et al. Effect of tempering temperature on hydrogen diffusion and hydrogen embrittlement susceptibility of DP600 steel[J]. Heat Treatment of Metals, 2021, 46(2): 87-94. [13] Cheng X B, Cheng X Y, Jiang C W, et al. Hydrogen diffusion and trapping in V-microalloyed mooring chain steels[J]. Materials Letters, 2018, 213: 118-121. [14] Cheng X Y, Zhang X Y. Effect of tempering temperature on stress-assisted hydrogen diffusion and hydrogen-induced embrittlement in a high strength low alloy steel[J]. Materials Science and Engineering A, 2023, 873: 144948. [15] Song J, Curtin W A. Atomic mechanism and prediction of hydrogen embrittlement in iron[J]. Nature Materials, 2013, 12(2): 145-151. [16] Qin Shengwei, Zhu Zhimin, Ma Haiyang, et al. Effect of retained austenite on the fatigue performance of novel high carbon quenching-partitioning-tempering steel[J]. Journal of Central South University, 2023, 30(7): 2107-2119. [17] Elber Wolf. Fatigue crack closure under cyclic tension[J]. Engineering Fracture Mechanics, 1970, 2(1): 37-45. [18] Xu T H, Feng Y R, Song S Y, et al. Fatigue crack propagation behaviour of steels with different microstructures[J]. Materials Science and Engineering A, 2012, 551: 110-115. [19] Depover T, Verbeken K. The detrimental effect of hydrogen at dislocations on the hydrogen embrittlement susceptibility of Fe-C-X alloys: An experimental proof of the HELP mechanism[J]. International Journal of Hydrogen Energy, 2018, 43(5): 3050-3061. [20] Khun N W, Frankel G S. Effects of surface roughness, texture and polymer degradation on cathodic delamination of epoxy coated steel samples[J]. Corrosion Science, 2013, 67: 152-160. [21] 陈 林, 郭飞翔, 王慧军, 等. 微观组织对U20Mn贝氏体钢疲劳裂纹扩展行为的影响[J]. 材料热处理学报, 2018, 39(2): 119-124. Chen Lin, Guo Feixiang, Wang Huijun, et al. Effect of microstructure on fatigue crack propagation behavior of U20Mn bainitic steel[J]. Transactions of Materials and Heat Treatment, 2018, 39(2): 119-124. [22] Tian G Q, Xu Y T, Fu L M, et al. Effect of long-term aging on the microstructure evolution and fracture mechanism of 9%Cr steels[J]. Materials Science and Engineering A, 2024, 893: 146133. |