[1] 别敦荣, 郭一蓉. 人工智能时代高等教育创新发展新趋势[J]. 中国高等教育, 2024(S1): 39-44. [2] 王 繁, 刘永强, 周天华. 人工智能引领高等教育数字化创新发展[J]. 中国高等教育, 2024(S1): 9-12. [3] 张剑平, 黄 俊, 徐吉林. 工程教育专业认证背景下《热处理原理与工艺》教学探讨[J]. 金属热处理, 2024, 49(4): 288-292. Zhang Jianping, Huang Jun, Xu Jilin. Discussion on the teaching of “Principles and Technologies of Heat Treatment” under background of engineering education professional certification[J]. Heat Treatment of Metals, 2024, 49(4): 288-292. [4] 郑玉航, 宋海涛, 姚二亮, 等. 基于人工智能混合式教学模式下的数字化能力提升研究[J]. 科技与创新, 2024(10): 160-162. [5] Zouhri A, Mallahi E M. Improving teaching using artificial intelligence and augmented reality[J]. Journal of Automation, Mobile Robotics and Intelligent Systems, 2024, 18(2): 57-61. [6] 司 司, 卡盖·索音图, 庄明兴, 等. 人工智能在可再生能源材料研发领域的研究进展[J]. 稀有金属, 2023, 47(4): 570-586. Si Si, Kagai-Suoyintu, Zhuang Mingxing, et al. Research progress of artificial intelligence in research and development of renewable energy materials[J]. Chinese Journal of Rare Metals, 2023, 47(4): 570-586. [7] 陈 鹰. 人工智能在钢铁材料微观组织分析中的应用与展望[J]. 中国体视学与图像分析, 2022, 27(1): 47-54. Chen Ying. Application and prospect of artificial intelligence in microstructure analysis of iron and steel[J]. Chinese Journal of Stereology and Image Analysis, 2022, 27(1): 47-54. [8] 马友忠. 基于课程知识图谱的智慧教学应用研究[J]. 河南教育(高教), 2024(2): 84-86. [9] 潘志宏, 钟志杰, 李伟生, 等. 多平台协同融合的“虚拟人工智能实验室”的构建与实践[J]. 实验室研究与探索, 2024, 43(5): 102-105, 152. Pan Zhihong, Zhong Zhijie, Li Weisheng, et al. Construction and practice of virtual artificial intelligence laboratory with multi-platform collaboration and integration[J]. Research and Exploration in Laboratory, 2024, 43(5): 102-105, 152. [10] Zhao C. Application and prospect of artificial intelligence in personalized learning[J]. Journal of Innovation and Development, 2024, 8(3): 24-27. [11] 王泽民, 庞灵欢. 工程教育认证背景下的金属学与热处理实验教学改革与实践[J]. 高教学刊, 2019(2): 130-132. [12] 梁迎丽, 刘 陈. 人工智能教育应用的现状分析、典型特征与发展趋势[J]. 中国电化教育, 2018(3): 24-30. Liang Yingli, Liu Chen. The application status, typical characteristics and development trends of artificial intelligence in education[J]. China Educational Technology, 2018(3): 24-30. [13] 宋 宇, 许昌良, 穆欣欣. 生成式人工智能赋能的新型课堂教学评价与优化研究[J]. 现代教育技术, 2024, 34(12): 27-36. Song Yu, Xu Changliang, Mu Xinxin. Research on new classroom teaching evaluation and optimization enabled by generative artificial intelligence[J]. Modern Educational Technology, 2024, 34(12): 27-36. [14] Yu H J, Chang Z X, Liu W, et al. An online integrated programming platform to acquire students' behavior data for immediate feedback teaching[J]. Computer Applications in Engineering Education, 2022, 31(3): 520-536. [15] 周 楠, 周建设. 基于深度学习的学生行为分析与教学效果评价[J]. 现代教育技术, 2021, 31(8): 102-111. Zhou Nan, Zhou Jianshe. The students' learning behavior analysis and teaching effect evaluation based on deep learning[J]. Modern Educational Technology, 2021, 31(8): 102-111. [16] 吴思楚. 基于图像识别的测验数据采集与分析系统开发及应用研究[D]. 金华: 浙江师范大学, 2023. Wu Sichu. Development and application research of image processing based test data acquisition and analysis system[D]. Jinhua: Zhejiang Normal University, 2023. [17] 袁 莉. 智能环境下以学习者为中心的学习分析: 潜力和挑战[J]. 中国教育信息化, 2022, 28(3): 3-4. [18] 沈 江, 陈璐琳, 潘 婷, 等. 新工科背景下基于数据挖掘的学习轨迹分析[J]. 天津大学学报(社会科学版), 2023, 25(6): 499-506. Shen Jiang, Chen Lulin, Pan Ting, et al. Analysis of learning trajectory based on data mining under the background of emerging engineering education[J]. Journal of Tianjin University(Social Sciences), 2023, 25(6): 499-506. |