[1] 张中武. 高强度低合金钢(HSLA)的研究进展[J]. 中国材料进展, 2016, 35(2): 141-151. Zhang Zhongwu. Research development of high strength low alloy(HSLA)steels[J]. Materials China, 2016, 35(2): 141-151. [2] 赵川翔. 590 MPa级低合金高强度热镀锌钢板表面亮点缺陷分析[J]. 金属热处理, 2022, 47(6): 270-273. Zhao Chuanxiang. Analysis of bright spot defect on surface of 590 MPa low-alloy high-strength galvannealed steel sheet[J]. Heat Treatment of Metals, 2022, 47(6): 270-273. [3] 蔡贞祥, 程晓英, 彭 浩, 等. 回火温度对含Nb低合金高强度钢氢行为的影响[J]. 金属热处理, 2023, 48(4): 45-52. Cai Zhenxiang, Cheng Xiaoying, Peng Hao, et al. Effect of tempering temperature on hydrogen behavior of Nb-containing HSLA steel[J]. Heat Treatment of Metals, 2023, 48(4): 45-52. [4] 王科强, 刘仁东, 郭金宇, 等. 汽车用800 MPa级冷轧低合金高强钢的研制[J]. 金属热处理, 2021, 46(1): 120-124. Wang Keqiang, Liu Rendong, Guo Jinyu, et al. Development of cold-rolled 800 MPa grade high strength low alloy steel for automobile[J]. Heat Treatment of Metals, 2021, 46(1): 120-124. [5] 李 娜. 铜在钢中的作用综述[J]. 辽宁科技大学学报, 2011, 34(2): 157-162. Li Na. Study on effects of copper in steel[J]. Journal of University of Science and Technology Liaoning, 2011, 34(2): 157-162. [6] Jain D, Isheim D, Seidman D N. Carbon redistribution and carbide precipitation in a high strength low-carbon HSLA-115 steel studied on a nanoscale by atom probe tomography[J]. Metallurgical and Materials Transactions A, 2017, 48(7): 3205-3219. [7] 梁丰瑞, 苏 航, 柴 锋, 等. 含Cu低合金高强钢时效Cu析出研究进展[J]. 中国冶金, 2023, 33(11): 29-38. Liang Fengrui, Su Hang, Chai Feng, et al. Advance in Cu precipitation during aging treatment of Cu-bearing low-alloy high-strength steel[J]. China Metallurgy, 2023, 33(11): 29-38. [8] 李建伟, 吴 帆. 高强钢的直接淬火回火工艺研究[J]. 热加工工艺, 2017, 46(14): 226-229. Li Jianwei, Wu Fan. Study on direct quenching and tempering process of high strength steel[J]. Hot Working Technology, 2017, 46(14): 226-229. [9] 薄艳艳, 章 昕, 康永林. X100管线钢DQ-T工艺研究[C]//2012年全国轧钢生产技术会论文集(上). 2012: 360-365, 378. [10] Qiu J, Ju X, Xin Y, et al. Effect of direct and reheated quenching on microstructure and mechanical properties of CLAM steels[J]. Journal of Nuclear Materials: Materials Aspects of Fission and Fusion, 2010, 407(3): 189-194. [11] 刘文庆, 朱晓勇, 钟柳明, 等. 微合金钢中第二相临界转变尺寸的研究[J]. 金属学报, 2011, 47(8): 1094-1098. Liu Wenqing, Zhu Xiaoyong, Zhong Liuming, et al. Study on critical transition radius of second phase in micro-alloyed steel[J]. Acta Metallurgica Sinica, 2011, 47(8): 1094-1098. [12] Hu L, Zhao S J, Liu Q. The effect of size of Cu precipitation on the mechanical properties of microalloyed steel[J]. Materials Science and Engineering A, 2012, 556: 140-146. [13] Kan Liye, Ye Qibin, Wang Zhaodong, et al. Improvement of strength and toughness of 1 GPa Cu-bearing HSLA steel by direct quenching[J]. Materials Science and Engineering A, 2022, 855: 143875. [14] 曹 鑫, 李 权, 杨银辉. 热处理工艺对30Cr16MolVN钢组织和性能的影响[J]. 金属热处理, 2021, 46(12): 40-46. Cao Xin, Li Quan, Yang Yinhui. Effect of heat treatment on microstructure and properties of 30Cr16Mo1VN steel[J]. Heat Treatment of Metals, 2021, 46(12): 40-46. [15] 姜 影, 杜水明, 黄俏梅, 等. 淬火工艺对42CrMo钢刀毂淬硬层深度及力学性能的影响[J]. 金属热处理, 2023, 48(9): 88-91. Jiang Ying, Du shuiming, Huang Qiaomei, et al. Effect of quenching process on hardened depth and mechanical properties of 42CrMo steel cutter hub[J]. Heat Treatment of Metals, 2023, 48(9): 88-91. |