| [1]草道英武. 金属钛及其应用[M]. 北京: 冶金工业出版社, 1989. [2]钱九红. 航空航天用新型钛合金的研究发展及应用[J]. 稀有金属, 2000, 24(3): 218-223.
 Qian Jiuhong. Application and development of new titanium alloys for aerospace[J]. Chinese Journal of Rare Metals, 2000, 24(3): 218-223.
 [3]李明怡. 航空用钛合金结构材料[J]. 世界有色金属, 2000(6): 17-20.
 [4]Leyens C, Peters M. 钛与钛合金[M]. 陈振华, 译. 北京: 化学工业出版社, 2006.
 [5]Wang G, Xu L, Wang Y, et al. Processing maps for hot working behavior of a PM TiAl alloy[J]. Journal of Materials Science & Technology, 2011, 27(10): 893-898.
 [6]徐冰仲, 张颖智. 离子氮化氮的渗入机理[J]. 金属热处理, 1983(10): 31-43.
 [7]赵 程. 活性屏离子渗氮技术的研究[J]. 金属热处理, 2004, 29(3): 1-4.
 Zhao Cheng. An investigation of active screen plasma nitriding[J]. Heat Treatment of Metals, 2004, 29(3): 1-4.
 [8]张仲麟, 雷明凯. ECR微波等离子体源离子渗氮[J]. 金属热处理, 1996(10): 14-17.Zhang Zhonglin, Lei Mingkai. Electron cyclotron resonance microwave plasma source ion nitriding[J]. Heat Treatment of Metals, 1996(10): 14-17.
 [9]邓光华. 热循环离子渗氮及其强渗作用[J]. 金属热处理, 1995(11): 8-10.
 Deng Guanghua. Thermal cyclic ion nitriding and its action of boost nitriding[J]. Heat Treatment of Metals, 1995(11): 8-10.
 [10]Kim T S, Park Y G, Wey M Y. Characterization of Ti-6Al-4V alloy modified by plasma carburizing process[J]. Materials Science & Engineering A, 2003, 361(1): 275-280.
 [11]Taktak S, Akbulut H. Dry wear and friction behaviour of plasma nitrided Ti-6Al-4V alloy after explosive shock treatment[J]. Tribology International, 2007, 40(3): 423-432.
 [12]Wierzchoń T, Fleszar A. Properties of surface layers on titanium alloy produced by thermo-chemical treatments under glow discharge conditions[J]. Surface and Coatings Technology, 1997, 96(2-3): 205-209.
 [13]杨军胜. 采用复合渗镀技术提高Ti-6Al-4V摩擦学性能[D]. 西安: 长安大学, 2010.
 [14]杨 闯, 刘 静, 马亚芹, 等. 间歇渗氮周期对TC4钛合金真空渗氮的影响[J]. 金属热处理, 2015, 40(9): 156-159.
 Yang Chuang, Liu Jing, Ma Yaqin, et al. Influence of intermittent period on vacuum nitriding of TC4 titanium alloy[J]. Heat Treatment of Metals, 2015, 40(9): 156-159.
 [15]王 琳, 孙 枫, 王 赟. α型钛合金离子渗氮工艺[J]. 金属热处理, 2018, 43(12): 166-169.
 Wang Lin, Sun Feng, Wang Yun. Plasma nitriding process of α titanium alloy[J]. Heat Treatment of Metals, 2018, 43(12): 166-169.
 [16]周 军, 杨 闯, 马亚芹, 等. 真空渗氮时间对TC4钛合金渗氮层组织与性能的影响[J]. 金属热处理, 2018, 43(9): 80-84.
 Zhou Jun, Yang Chuang, Ma Yaqin, et al. Influence of vacuum nitriding time on microstructure and properties of nitriding layer of TC4 titanium alloy[J]. Heat Treatment of Metals, 2018, 43(9): 80-84.
 [17]王 琳, 孙 枫, 王 赟, 等. TC4钛合金的离子渗氮工艺[J]. 金属热处理, 2018, 43(9): 171-175.
 Wang Lin, Sun Feng, Wang Yun, et al. Plasma nitriding of TC4 titanium alloy[J]. Heat Treatment of Metals, 2018, 43(9): 171-175.
 [18]黄炳南. 预塑性变形对铁-钛(1.75%)合金渗氮过程的影响[J]. 材料保护, 1990, 23(10): 18-21.
 [19]沈小军, 王 凯. 加速渗氮过程并提高渗氮层性能[J]. 热处理技术与装备, 2004, 25(3): 32-35.
 [20]高玉魁. 表面形变处理对32Cr3MoVA钢渗氮层组织和性能的影响[J]. 材料热处理学报, 2005, 26(1): 74-76.
 Gao Yukui. Influence of surface straining on microstructure and mechanical property of 32Cr3MoVA steel[J]. Transactions of Materials and Heat Treatment, 2005, 26(1): 74-76.
 [21]唐 电, 邱玉朗. 中国古代的钢铁渗碳和渗氮技术[J]. 金属热处理, 2002, 27(8): 50-53.
 Tang Dian, Qiu Yulang. Carburizing and nitriding of ferrous metals in ancient China[J]. Heat Treatment of Metals, 2002, 27(8): 50-53.
 [22]顾晓辉, 刘 君, 石继红. 淬火、时效温度对TC4钛合金组织和力学性能的影响[J]. 金属热处理, 2011, 36(2): 29-33.
 Gu Xiaohui, Liu Jun, Shi Jihong. Influence of quenching and aging temperature on microstructure and mechanical properties of TC4 titanium alloy[J]. Heat Treatment of Metals, 2011, 36(2): 29-33.
 |