[1] 蒲 娇, 黄 青, 张 薇, 等. 生物医用Ti合金处理工艺、力学性能及耐腐蚀性能研究进展[J]. 热加工工艺, 2024, 53(4): 5-9, 15. Pu Jiao, Huang Qing, Zhang Wei, et al. Research progress on treatment process, mechanical properties and corrosion resistance of biomedical Ti alloy[J]. Hot Working Technology, 2024, 53(4): 5-9, 15. [2] Liu Haitao, Li Tao, He Ruijun, et al. Improving the wear performance of TC6 titanium alloy by ion nitriding treatment[J]. Engineering Research Express, 2024, 6(2): 025431. [3] 朱和明, 魏 辽, 侯乃贺, 等. 石墨对TA7钛合金微弧氧化涂层组织结构及摩擦磨损行为的影响[J]. 材料保护, 2020, 53(5): 83-87, 100. Zhu Heming, Wei Liao, Hou Naihe, et al. Influence of graphite on the microstructure and tribological behavior of microarc oxidation coatings formed on TA7 alloy[J]. Materials Protection, 2020, 53(5): 83-87, 100. [4] 袁向儒, 李 博, 杨夏苇. Ti55531钛合金化学镀镍工艺研究[J]. 新技术新工艺, 2023(10): 54-58. Yuan Xiangru, Li Bo, Yang Xiawei. Process research on electroless Ni plating of Ti55531 titanium alloy[J]. New Technology and New Process, 2023(10): 54-58. [5] 陈雨露, 杨 闯, 潘文美, 等. 航空用TC6钛合金真空气体渗氮处理[J]. 热加工工艺, 2023, 52(10): 152-155. Chen Yulu, Yang Chuang, Pan Wenmei, et al. Vacuum gas nitriding treatment of TC6 titanium alloy for aeroengine[J]. Hot Working Technology, 2023, 52(10): 152-155. [6] Xu Shuo, Cao Yi, Duan Bingbing, et al. Enhanced strength and sliding wear properties of gas nitrided Ti-6Al-4V alloy by ultrasonic shot peening pretreatment[J]. Surface and Coatings Technology, 2023, 458: 129325. [7] 贺瑞军, 孙 枫, 王 琳, 等. 钛合金离子渗氮后的组织及耐磨性能[J]. 金属热处理, 2016, 41(4): 25-29. He Ruijun, Sun Feng, Wang Lin, et al. Microstructure and wear resistance of ion-nitrided titanium alloy[J]. Heat Treatment of Metals, 2016, 41(4): 25-29. [8] 李永康, 赵亚晴, 邵明昊, 等. TC4钛合金离子渗氮层的微观结构和性能[J]. 热处理, 2021, 36(5): 23-27. Li Yongkang, Zhao Yaqing, Shao Minghao, et al. Microstructure and property of ion nitrided layer in TC4 titanium alloy[J]. Heat Treatment, 2021, 36(5): 23-27. [9] Zhang Ziqian, Liu Haitao, Sun Wenbo, et al. Shot peening pre-treatment for nano-nitriding layer formation to enhance wear and corrosion resistance in medical titanium alloys[J]. Materials Letters, 2024, 368: 136669. [10] 成亦飞, 王 琳, 贺瑞军, 等. 钛合金离子渗氮层的摩擦磨损行为[J]. 金属热处理, 2019, 44(10): 170-172. Cheng Yifei, Wang Lin, He Ruijun, et al. Friction and wear behavior of titanium plasma nitrided layer[J]. Heat Treatment of Metals, 2019, 44(10): 170-172. [11] Pan Shijie, Li Chaofeng, Jia Tichang, et al. An improved energy wear model of three-dimensional ball-plane contact structure and its fretting wear dynamic behaviors study[J]. Wear, 2024, 550-551: 205405. [12] 刘 彬, 李 晟, 毛玉刚, 等. TA15钛合金高温摩擦磨损性能研究[J]. 表面技术, 2023, 52(10): 151-159. Liu Bin, Li Sheng, Mao Yugang, et al. Tribological properties of TA15 titanium alloy at different high temperatures[J]. Surface Technology, 2023, 52(10): 151-159. [13] 付壁聪, 傅丽华, 杜三明, 等. 粗糙度对铜基表面PDA/PTFE涂层摩擦磨损性能的影响[J]. 材料热处理学报, 2024, 45(11): 188-197. Fu Bicong, Fu Lihua, Du Sanming, et al. Effect of roughness on friction and wear performance of PDA/PTFE coatings on copper substrate surfaces[J]. Transactions of Materials and Heat Treatment, 2024, 45(11): 188-197. [14] Liang Fei, Meng Ao, Sun Yixing, et al. A novel wear-resistant Ni-based superalloy via high Cr-induced subsurface nanotwins and heterogeneous composite glaze layer at elevated temperatures[J]. Tribology International, 2023, 183: 108383. |