[1] 邓闪闪, 孙永庆, 蒋业华, 等. A286合金的高温持久性能[J]. 金属热处理, 2023, 48(3): 179-187. Deng Shanshan, Sun Yongqing, Jiang Yehua, et al. High temperature rupture properties of A286 alloy[J]. Heat Treatment of Metals, 2023, 48(3): 179-187. [2] 代礼斌, 杨章程, 邓 雄, 等. 固溶温度对A286合金低温力学性能的影响[J]. 金属热处理, 2023, 48(3): 96-99. Dai Libin, Yang Zhangcheng, Deng Xiong, et al. Effect of solution temperature on cryogenic mechanical properties of A286 alloy[J]. Heat Treatment of Metals, 2023, 48(3): 96-99. [3] De Tiedra P, Martín Ó, San-Juan M. Potentiodynamic study of the influence of gamma prime and eta phases on pitting corrosion of A286 superalloy[J]. Journal of Alloys and Compounds, 2016, 673: 231-236. [4] 李秀艳, 戎利建, 李依依. 晶界η相对Fe-Ni-Cr奥氏体合金力学性能的影响[J]. 金属学报, 2005, 41(11): 47-50. Li Xiuyan, Rong Lijian, Li Yiyi. Effect of grain boundary η phase on the mechanical properties of Fe-Ni-Cr alloy[J]. Acta Metallurgica Sinica, 2005, 41(11): 47-50 [5] Guan L, Zhou Y, Zhang B, et al. Influence of aging treatment on the pitting behavior associated with the dissolution of active nanoscale β-phase precipitates for an Al-Mg alloy[J]. Corrosion Science, 2016, 103: 255-267. [6] Zhang Z, Zhao H, Zhang H, et al. Effect of isothermal aging on the pitting corrosion resistance of UNS S82441 duplex stainless steel based on electrochemical detection[J]. Corrosion Science, 2015, 93: 120-125. [7] Xiong H, Zhou Y, Yang P, et al. Effects of cryorolling, room temperature rolling and aging treatment on mechanical and corrosion properties of 7050 aluminum alloy[J]. Materials Science and Engineering A, 2022, 853: 143764. [8] Wu W, Qin L, Cheng X, et al. Microstructural evolution and its effect on corrosion behavior and mechanism of an austenite-based low-density steel during aging[J]. Corrosion Science, 2023, 212: 110936. [9] Jeon S H, Kim S T, Choi M S, et al. Effects of cerium on the compositional variations in and around inclusions and the initiation and propagation of pitting corrosion in hyperduplex stainless steels[J]. Corrosion Science, 2013, 75: 367-375. [10] Burstein G, Pistorius P, Mattin S. The nucleation and growth of corrosion pits on stainless steel[J]. Corrosion Science, 1993, 35(1/4): 57-62. [11] Bai G, Lu S, Li D, et al. Influences of niobium and solution treatment temperature on pitting corrosion behaviour of stabilised austenitic stainless steels[J]. Corrosion Science, 2016, 108: 111-124. [12] Tian W, Du N, Li S, et al. Metastable pitting corrosion of 304 stainless steel in 3.5%NaCl solution[J]. Corrosion Science, 2014, 85: 372-379. [13] Gholami M, Hoseinpoor M, Moayed M H. A statistical study on the effect of annealing temperature on pitting corrosion resistance of 2205 duplex stainless steel[J]. Corrosion Science, 2015, 94: 156-164. [14] Jiang J, Xu D, Xi T, et al. Effects of aging time on intergranular and pitting corrosion behavior of Cu-bearing 304L stainless steel in comparison with 304L stainless steel[J]. Corrosion Science, 2016, 113: 46-56. [15] 马 静, 罗 鸿, 王申豪, 等. 外加电位下X80双相管线钢在模拟沿海土壤环境中的应力腐蚀行为[J]. 金属热处理, 2023, 48(2): 30-35. Ma Jing, Luo Hong, Wang Shenhao, et al. Stress corrosion behavior of X80 dual-phase pipeline steel under applied potential in simulated coastal soil environment[J]. Heat Treatment of Metals, 2023, 48(2): 30-35. [16] 朱伶俐, 李 云, 刘 慧, 等. In对Al-Mg-Ga-Sn-(In)铝合金阳极组织及电化学性能的影响[J]. 金属热处理, 2020, 45(7): 159-162. Zhu Lingli, Li Yun, Liu Hui, et al. Effect of In on structure and electrochemical properties of Al-Mg-Ga-Sn-(In) aluminum alloy anodes[J]. Heat Treatment of Metals, 2020, 45(7): 159-162. [17] 梁 浩, 赵明久, 陈胜虎, 等. J75抗氢合金中B的作用机制研究[J]. 金属学报, 2015, 51(12): 1538-1544. Liang Hao, Zhao Mingjiu, Chen Shenghu, et al. Mechanism of B in hydrogen-resistance J75 alloy[J]. Acta Metallurgica Sinica, 2015, 51(12): 1538-1544. [18] 李忠文, 赵明久, 戎利建. 沉淀强化奥氏体合金的氢致断裂行为[J]. 材料研究学报, 2012, 26(2): 113-118. Li Zhongwen, Zhao Mingjiu, Rong Lijian. Study on behaviors of hydrogen-induced fracture of precipitation strengthened austenitic alloy[J]. Chinese Journal of Materials Research, 2012, 26(2): 113-118. [19] 郭子峰, 赵明久, 戎利建. η相对沉淀强化奥氏体合金持久性能的影响[J]. 金属热处理, 2012, 37(9): 20-23. Guo Zifeng, Zhao Mingjiu, Rong Lijian. Effect of η phase on stress rupture property of precipitation strengthened austenitic alloy[J]. Heat Treatment of Metals, 2012, 37(9): 20-23. [20] 张泽荣. MAX相Cr2AlC陶瓷及其非晶/纳米晶涂层在3.5wt.%NaCl溶液中的电化学腐蚀行为[D]. 合肥: 中国科学技术大学, 2021. [21] 邢珊珊, 戚浩宇, 郑传波. 固溶处理对2205双相不锈钢组织及钝化膜特性的影响[J]. 金属热处理, 2020, 45(3): 146-150. Xing Shanshan, Qi Haoyu, Zheng Chuanbo. Effect of solution treatment on microstructure and passivation film properties of 2205 duplex stainless steel[J]. Heat Treatment of Metals, 2020, 45(3): 146-150. [22] Qiao Y X, Zheng Y G, Ke W, et al. Electrochemical behaviour of high nitrogen stainless steel in acidic solutions[J]. Corrosion Science, 2009, 51(5): 979-986. [23] Wang Y, Jiang S L, Zheng Y G, et al. Electrochemical behaviour of Fe-based metallic glasses in acidic and neutral solutions[J]. Corrosion Science, 2012, 63: 159-173. [24] Muñoz A I, Antón J G, Guiñón J, et al. Effects of solution temperature on localized corrosion of high nickel content stainless steels and nickel in chromated LiBr solution[J]. Corrosion Science, 2006, 48(10): 3349-3374. |