[1] Sun G S, Zhao M M, Du L X, et al. Significant effects of grain size on mechanical response characteristics and deformation mechanisms of metastable austenitic stainless steel[J]. Materials Characterization, 2022, 184: 111674. [2] 郑建东, 李 磊, 田立政, 等. 退火温度对304不锈钢疲劳损伤演化行为的影响[J]. 热加工工艺, 2023-08-02. Zheng Jiandong, Li Lei, Tian Lizheng, et al. Effect of annealing temperature on fatigue damage evolution behavior of 304 stainless steel[J]. Hot Working Technology, 2023-08-02. [3] Misra R D K, Wan X L, Challa V S A, et al. Relationship of grain size and deformation mechanism to the fracture behavior in high strength-high ductility nanostructured austenitic stainless steel[J]. Materials Science and Engineering A, 2015, 626: 41-50. [4] 姚 艺, 任延杰, 彭玉宬, 等. 304不锈钢在熔融多硫化钠中的高温腐蚀行为研究[J]. 材料导报, 2023, 37(14): 81-85. Yao Yi, Ren Yanjie, Peng Yucheng, et al. Stduy on high-temperature corrosion behavior of 304 stainless steel in molten sodium polysulfide[J]. Materials Reports, 2023, 37(14): 81-85. [5] Sun G S, Du L X, Hu J, et al. Ultrahigh strength nano/ultrafine-grained 304 stainless steel through three-stage cold rolling and annealing treatment[J]. Materials Characterization, 2015, 110: 228-235. [6] 王晓梅, 刘芳荣, 张 尧, 等. 纳米/超细晶奥氏体不锈钢腐蚀机制研究进展[J]. 腐蚀与防护, 2014, 35(11): 1069-1073. Wang Xiaomei, Liu Fangrong, Zhang Yao, et al. Research progress of corrosion resistance for nano/ultrafine-grained austenite stainless steel[J]. Corrosion and Protection, 2014, 35(11): 1069-1073. [7] 高 乐, 张 宇, 叶一璇, 等. 超声纳米晶体表面改性对304不锈钢显微组织和性能的影响[J]. 材料工程, 2024, 52(8): 142-149. Gao Le, Zhang Yu, Ye Yixuan, et al. Effect of ultrasonic nanocrystal surface modification on microstructure and properties of 304 stainless steel[J]. Journal of Materials Engineering, 2024, 52(8): 142-149. [8] Challa V S A, Misra R D K, Somani M C, et al. Influence of grain structure on the deformation mechanism in martensitic shear reversion-induced Fe-16Cr-10Ni model austenitic alloy with low interstitial content: Coarse-grained versus nano-grained/ultrafine-grained structure[J]. Materials Science and Engineering A, 2016, 661: 51-60. [9] Ma Y, Jin J E, Lee Y K. A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel[J]. Scripta Materialia, 2005, 52(12): 1311-1315. [10] 刘 佳, 邓想涛, 黄 龙, 等. 纳米/超细晶18Cr-8Ni奥氏体不锈钢力学性能及变形机制[J]. 材料热处理学报, 2019, 40(3): 88-93. Liu Jia, Deng Xiangtao, Huang Long, et al. Mechanical properties and deformation mechanism of nano/ultrafine-grained 18Cr-8Ni austenitic stainless steel[J]. Transactions of Materials and Heat Treatment, 2019, 40(3): 88-93. [11] Liu J, Deng X T, Huang L, et al. High-cycle fatigue behavior of 18Cr-8Ni austenitic stainless steels with grains ranging from nano/ultrafine-size to coarse[J]. Materials Science and Engineering A, 2018, 733: 128-136. [12] Janardhan G, Mukhopadhyay G, Kishore K, et al. Resistance spot welding of dissimilar interstitial-free and high-strength low-alloy steels[J]. Journal of Materials Engineering and Performance, 2020, 29: 3383-3394. [13] 吕光宙, 马泽铭, 许爱军, 等. 304不锈钢激光焊接接头组织性能及断裂机理研究[J]. 精密成型工程, 2023, 15(9): 74-82. Lü Guangzhou, Ma Zeming, Xu Aijun, et al. Microstructure, properties and fracture mechanism of 304 stainless steel welding joint by laser[J]. Journal of Netshape Forming Engineering, 2023, 15(9): 74-82. [14] Dong Y, Qi X Y, Du L X, et al. Effect of welding thermal cycle on microstructural characteristics and toughness in simulated heat affected zone of low-C medium-Mn high strength steel[J]. Journal of Materials Engineering and Performance, 2022, 31: 2653-2663. [15] 黄伟波, 赵晓宇, 鲁文佳, 等. 激光金属沉积成形304不锈钢的疲劳断裂机理分析[J]. 焊接学报, 2023, 44(9): 67-73. Huang Weibo, Zhao Xiaoyu, Lu Wenjia, et al. Fatigue fracture mechanism of 304 stainless steel manufactured by laser metal deposition[J]. Transactions of the China Welding Institution, 2023, 44(9): 67-73. [16] Arafin M A, Szpunar J A. A new understanding of intergranular stress corrosion cracking resistance of pipeline steel through grain boundary character and crystallographic texture studies[J]. Corrosion Science, 2009, 51: 119-128. [17] Abou-Elazm A, Abdel-Karim R, Elmahallawi I, et al. Correlation between the degree of sensitization and stress corrosion cracking susceptibility of type 304H stainless steel[J]. Corrosion Science, 2009, 51(2): 203-208. [18] Hong S M, Kim M Y, Min D J, et al. Unraveling the origin of strain-induced precipitation of M23C6 in the plastically deformed 347 austenite stainless steel[J]. Materials characterization, 2014, 94: 7-13. [19] Almanza E, Murr L E. A comparison of sensitization kinetics in 304 and 316 stainless steels[J]. Journal of Materials Science, 2000, 35: 3181-3188. [20] Zhao M M, Liu T, Du L X, et al. On the intergranular corrosion susceptibility of 304 stainless steel with ultrafine grains and comparison with micrometer austenitic grains counterpart[J]. Corrosion, 2023, 79(4): 449-458. [21] Zhao M M, Wu H Y, Zhang B, et al. Effect of Cr-rich carbide precipitates on austenite stability and consequent corrosion behavior of ultrafine-grained 304 stainless steel produced by cryogenic rolling and annealing treatment[J]. Materials Characterization, 2023, 195: 112553. [22] Lv J L, Luo H Y, Liang T X. The grain size and special boundary dependence of corrosion resistance in 304 austenitic stainless steels[J]. Materials Chemistry and Physics, 2015, 163: 496-500. [23] Schino A D, Kenny J M. Effects of the grain size on the corrosion behavior of refined AISI 304 austenitic stainless steels[J]. Journal of Materials Science Letters, 2002, 21(20): 1631-1634. [24] 赵苗苗. 奥氏体不锈钢纳米化组织性能调控与耐腐蚀机理研究[D]. 沈阳: 东北大学, 2023. |