[1] Płonka B, Żyłka K, Remsak K, et al. Influence of copper content on the structure and properties of aluminium alloys[J]. Archives of Civil and Mechanical Engineering, 2023, 24(1): 8. [2] Wu C, Wen J, Zhang J, et al. Additive manufacturing of heat-resistant aluminum alloys: A review[J]. International Journal of Extreme Manufacturing, 2024, 6(6): 062013. [3] Georgantzia E, Gkantou M, Kamaris G S. Aluminium alloys as structural material: A review of research[J]. Engineering Structures, 2021, 227: 111372. [4] Zhang A, Li Y. Thermal conductivity of aluminum alloys—A review[J]. Materials, 2023, 16(8): 2972. [5] Li J, Li F, Ma X, et al. Effect of grain boundary characteristic on intergranular corrosion and mechanical properties of severely sheared Al-Zn-Mg-Cu alloy[J]. Materials Science and Engineering A, 2018, 732: 53-62. [6] Sinyavskii V S, Ulanova V V, Kalinin V D. On the mechanism of intergranular corrosion of aluminum alloys[J]. Protection of Metals and Physical Chemistry of Surfaces, 2004, 40: 481-490. [7] Cabral-Miramontes J, Cabral-Miramontes N, Nieves-Mendoza D, et al. Anodizing of AA2024 aluminum-copper alloy in citric-sulfuric acid solution: Effect of current density on corrosion resistance[J]. Coatings, 2024, 14(7): 816. [8] Román A S, Méndez C M, Gervasi C A, et al. Corrosion resistance of aluminum-copper alloys with different grain structures[J]. Journal of Materials Engineering and Performance, 2020, 30(1): 131-144. [9] Zhang X, Zhou X, Hashimoto T, et al. Localized corrosion in AA2024-T351 aluminium alloy: Transition from intergranular corrosion to crystallographic pitting[J]. Materials Characterization, 2017, 130: 230-236. [10] Grimmer H. Coincidence-site lattices[J]. Acta Crystallographica Section A, 1976, 32: 783-785. [11] Watanabe T. Structural effects on grain boundary segregation, hardening and fracture[J]. Journal de Physique Colloques, 1985, 46(4): 555-566. [12] Palumbo G, Aust K T, Lehockey E M, et al. On a more restrictive geometric criterion for “special” CSL grain boundaries[J]. Scripta Materialia, 1998, 38(11): 1685-1690. [13] Bouchet D, Priester L. Grain boundary plane and intergranular segregation in nickel-sulfur system[J]. Scripta Metallurgica, 1987, 21(4): 475-478. [14] Cao W, Xia S, Bai Q, et al. Effects of initial microstructure on the grain boundary network during grain boundary engineering in Hastelloy N alloy[J]. Journal of Alloys and Compounds, 2017, 704: 724-733. [15] Liu T, Xia S, Bai Q, et al. Evaluation of grain boundary network and improvement of intergranular cracking resistance in 316L stainless steel after grain boundary engineering[J]. Materials, 2019, 12(2): 242. [16] Randle V, Hu Y, Rohrer G S, et al. Distribution of misorientations and grain boundary planes in grain boundary engineered brass[J]. Materials Science and Technology, 2005, 21(11): 1287-1292. [17] 刘智强, 王卫国. 冷轧变形Al-Cu合金再结晶Σ3晶界研究[J]. 电子显微学报, 2018, 37(3): 232-237. Liu Zhiqiang, Wang Weiguo. Study on Σ3 boundaries in a cold rolled and recrystallized Al-Cu alloy[J]. Journal of Chinese Electron Microscopy Society, 2018, 37(3): 232-237. [18] Wang Weiguo, Lin Chen, Li Guanghui, et al. Preferred orientation of grain boundary plane in recrystallized high purity aluminum[J]. Scientia Sinica Technologica, 2014, 44(12): 1295-1308. [19] Wen Y, Zhang J M. Surface energy calculation of the fcc metals by using the MAEAM[J]. Solid State Communications, 2007, 144: 163-167. [20] Wang W, Cai C, Rohrer G S, et al. Grain boundary inter-connections in polycrystalline aluminum with random orientation[J]. Materials Characterization, 2018, 144: 411-423. [21] 刘智强. Al-Cu二元合金再结晶晶界面分布及晶界界面匹配研究[D]. 福州: 福建工程学院, 2018. Liu Zhiqiang. A study on grain boundary plane distributions and grain boundary inter-connections in recrystallized Al-Cu binary alloy[D]. Fuzhou: Fujian University of Technology, 2018. [22] 李振想, 王卫国, Rohrer G S, 等. 室温和深冷轧制对纯Al再结晶{111}/{111}近奇异晶界的影响[J]. 金属学报, 2024-05-06. Li Zhenxiang, Wang Weiguo, Rohrer G S, et al. Effects of ambient and cryogenic rolling on {111}/{111} near-singular boundary formation during subsequent recrystallization annealing in pure aluminum[J]. Acta Metallurgica Sinica, 2024-05-06. [23] Du A, Wang W, Gu X, et al. The dependence of precipitate morphology on the grain boundary types in an aged Al-Cu binary alloy[J]. Journal of Materials Science, 2020, 50(1): 781-791. [24] 王宗谱, 王卫国, Srohrer G, 等. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960. Wang Zongpu, Wang Weiguo, Srohrer G, et al. {111}/{111} near singular boundaries in an Al-Zn-Mg-Cu alloy recrystallized after rolling at different temperatures[J]. Acta Metallurgica Sinica, 2023, 59(7): 947-960. [25] 师 瑀, 张莹莹, 刘 峰, 等. 面心立方金属晶界工程技术的研究进展[J]. 热加工工艺, 2020, 49(16): 32-36. Shi Yu, Zhang Yingying, Liu Feng, et al. Research progress of grain boundary engineering technology for face-centered cubic metals[J]. Hot Working Technology, 2020, 49(16): 32-36. [26] Rohrer G S, Saylor D M, El Dasher B, et al. The distribution of internal interfaces in polycrystals[J]. International Journal of Materials Research, 2004, 95: 197-214. [27] 王卫国. 晶界界面匹配表征方法及其在晶界工程中的应用[J]. 电子显微学报, 2023, 42(4): 526-542. Wang Weiguo. Grain boundary inter-connection characterization and its application in grain boundary engineering[J]. Journal of Chinese Electron Microscopy Society, 2023, 42(4): 526-542. [28] Wright S I, Larsen R J. Extracting twins from orientation imaging microscopy scan data[J]. Journal of Microscopy, 2002, 205(3): 245-252. [29] 吴懿娟, 晁代义, 姜建堂. 形变热处理对铝合金晶粒尺寸的影响[J]. 热处理技术与装备, 2016, 37(5): 60-64. Wu Yijuan, Chao Daiyi, Jiang Jiantang. The effect of thermo-mechanical treatment on grain size of aluminum alloy[J]. Heat Treatment Technology and Equipment, 2016, 37(5): 60-64. [30] 张学良, 万秀颖, 王 玉. 正交试验在摩擦焊工艺参数优化中的应用[J]. 制造技术与机床, 2006(2): 102-103. Zhang Xueliang, Wan Xiuying, Wang Yu. Application of orthogonal analysis on optimization of technological parameters of friction welding[J]. Manufacturing Technology and Machine Tool, 2006(2): 102-103. [31] 谭国寅, 曹瑞珂, 岳有成, 等. 不同均匀化退火时1235铝的晶粒长大动力学研究[J]. 热加工工艺, 2016, 45(20): 176-178, 182. Tan Guoyan, Cao Ruike, Yue Youcheng, et al. Study on grain growth kinetics of 1235 aluminum during different homogenization annealing[J]. Hot Working Technology, 2016, 45(20): 176-178, 182. [32] Mackenzie J K, Thomson M. Some statistics associated with the random disorientation of cubes[J]. Biometrika, 1957, 44: 205-210. [33] 吕胡缘, 胡 励, 时来鑫, 等. 基于元胞自动机的金属静态再结晶行为研究进展[J]. 材料热处理学报, 2021, 42(2): 1-10. Lü Huyuan, Hu Li, Shi Laixin, et al. Research progress of static recrystallization behavior of metals based on cellular automata[J]. Transactions of Materials and Heat Treatment, 2021, 42(2): 1-10. [34] 冯小铮, 王卫国, Rohrer G S, 等. 晶粒长大对高纯Al{111}/{111}近奇异晶界的影响[J]. 金属学报, 2024, 60(1): 80-94. Feng Xiaozheng, Wang Weiguo, Rohrer G S, et al. Effects of grain growth on the {111}/{111} near singular boundaries in high purity aluminum[J]. Acta Metallurgica Sinica, 2024, 60(1): 80-94. [35] 蔡长辉. 7A85铝合金近奇异晶界研究[D]. 福州: 福建工程学院, 2019. Cai Changhui. A study on near singular boundary in 7A85 aluminum alloy[D]. Fuzhou: Fujian University of Technology, 2019. [36] 曹楚南. 腐蚀电化学原理[M]. 3版. 北京: 化学工业出版社, 2008. Cao Chunan. Principles of Electrochemistry of Corrosion[M]. 3rd Edition. Beijing: Chemical Industry Press, 2008. |