[1]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2]Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys[J]. Intermetallics, 2014, 46: 131-140. [3]潘云炜, 董安平, 杜大帆, 等. CrCoNi基多主元合金研究进展[J]. 中国材料进展, 2021, 40(4): 241-250. Pan Yunwei, Dong Anping, Du Dafan, et al. Research progress of CrCoNi-based multi-component alloys[J]. Materials China, 2021, 40(4): 241-250. [4]白 曦, 方 伟, 常若斌, 等. 沉淀强化高熵合金研究进展[J]. 材料导报, 2022, 36(21): 113-119. Bai Xi, Fang Wei, Chang Ruobin, et al. Precipitation-hardening in high-entropy alloys: A review[J]. Materials Reports, 2022, 36(21): 113-119. [5]冯月明, 姚百胜, 毕台飞, 等. 中熵合金力学性能研究进展[J]. 焊管, 2021, 44(1): 25-31. Feng Yueming, Yao Baisheng, Bi Taifei, et al. Research progress on mechanical properties of medium entropy alloy[J]. Welded Pipe and Tube, 2021, 44(1): 25-31. [6]温晓灿, 张 凡, 雷智锋, 等. 高熵合金中的第二相强韧化[J]. 中国材料进展, 2019, 38(3): 242-250. Wen Xiaocan, Zhang Fan, Lei Zhifeng, et al. Second phase strengthening in high-entropy alloys[J]. Materials China, 2019, 38(3): 242-250. [7]Zhao Y L, Yang T, Tong Y, et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy[J]. Acta Materialia, 2017, 138: 72-82. [8]Yang T, Zhao Y L, Tong Y, et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys[J]. Science, 2018, 362(6417): 933-937. [9]Kumar S S S, Raghu T, Bhattacharjee P P, et al. Strain rate dependent microstructural evolution during hot deformation of a hot isostatically processed nickel base superalloy[J]. Journal of Alloys and Compounds, 2016, 681: 28-42. [10]Laplanche G, Kostka A, Reinhart C, et al. Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi[J]. Acta Materialia, 2017, 128: 292-303. [11]Zhang Z H, Jiang P, Yuan F P, et al. Enhanced tensile properties by heterogeneous grain structures and coherent precipitates in a CoCrNi-based medium entropy alloy[J]. Materials Science and Engineering A, 2022, 832: 142440. [12]Schneider M, George E P, Manescau T J, et al. Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy[J]. International Journal of Plasticity, 2020, 124: 155-169. [13]An X, Ni S, Song M, et al. Deformation twinning and detwinning in face-centered cubic metallic materials[J]. Advanced Engineering Materials, 2019, 22(1): 1900479. [14]Mahajan S, Pande C S, Imam M A, et al. Formation of annealing twins in f.c.c. crystals[J]. Acta Materialia, 1997, 45(6): 2633-2638. [15]He G A, Zhao Y F, Gan B, et al. Mechanism of grain refinement in an equiatomic medium-entropy alloy CrCoNi during hot deformation[J]. Journal of Alloys and Compounds, 2020, 815: 152382. [16]Dan Sathiaraj G, Skrotzki W, Pukenas A, et al. Effect of annealing on the microstructure and texture of cold rolled CrCoNi medium-entropy alloy[J]. Intermetallics, 2018, 101: 87-98. [17]李双元, 王 宏, 彭渝丽, 等. 退火工艺对冷轧态CoCrNi中熵合金组织与性能的影响[J]. 西安工业大学学报, 2020, 40(1): 95-101. Li Shuangyuan, Wang Hong, Peng Yuli, et al. Effect of annealing on microstructure and properties of cold rolled CoCrNi medium-entropy alloy[J]. Journal of Xi'an Technological University, 2020, 40(1): 95-101. |