[1] 王兆丰, 程晓英, 李晓亮, 等. 回火温度对含V、Nb高强度低合金钢氢脆敏感性的影响[J]. 金属热处理, 2023, 48(3): 12-18. Wang Zhaofeng, Cheng Xiaoying, Li Xiaoliang, et al. Effect of tempering temperature on hydrogen embrittlement sensitivity of a high strength low alloy steel containing V and Nb[J]. Heat Treatment of Metals, 2023, 48(3): 12-18. [2] 陈 刚, 罗小兵, 柴 锋, 等. 轧制加热温度对高强度低合金钢组织及冲击性能的影响[J]. 金属热处理, 2022, 47(4): 116-121. Chen Gang, Luo Xiaobing, Chai Feng, et al. Influence of rolling heating temperature on microstructure and impact property of a high strength low alloy steel[J]. Heat Treatment of Metals, 2022, 47(4): 116-121. [3] 杨才福, 张永权. 新一代易焊接高强度高韧性船体钢的研究[J]. 钢铁, 2001, 36(11): 50-54. Yang Caifu, Zhang Yongquan. New generation of HSLA steels for naval structures[J]. Iron and Steel, 2001, 36(11): 50-54. [4] 彭 浩, 程晓英, 李晓亮, 等. 高强度低合金钢中V和Nb对氢陷阱的影响[J]. 中国腐蚀与防护学报, 2023, 43(2): 415-420. Peng Hao, Cheng Xiaoying, Li Xiaoliang, et al. Effect of V and Nb on hydrogen traps in high strength low alloy steel[J]. Journal of Chinese Society for Corrosion and Protection, 2023, 43(2): 415-420. [5] Liu C X, Shi L, Liu Y C, et al. Acicular ferrite formation during isothermal heating in HSLA steel[J]. Journal of Materials Science, 2015, 51(7): 3555-3563. [6] Liu Y C, Shi L, Liu C X, et al. Effect of step quenching on microstructures and mechanical properties of HSLA steel[J]. Materials Science and Engineering A, 2016, 675: 371-378. [7] Gao Q Z, Jiang Y J, Liu Z Y, et al. Effects of alloying elements on microstructure and mechanical properties of Co-Ni-Al-Ti superalloy[J]. Materials Science and Engineering A, 2020, 779: 139139. [8] Zhou Y H, Liu Y C, Zhou X S, et al. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review[J]. Journal of Materials Science and Technology, 2017, 33(12): 1448-1456. [9] Zhang L, Kannengiesser T. Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel[J]. Materials Science and Engineering A, 2014, 613: 326-335. [10] 范建文, 刘清友, 侯豁然, 等. 超细晶铁素体钢的强度[J]. 金属热处理, 2003, 28(7): 5-10. Fan Jianwen, Liu Qingyou, Hou Huoran, et al. The strength of ultra-fine grained ferrite steel[J]. Heat Treatment of Metals, 2003, 28(7): 5-10. [11] Dong J, Li C, Liu C X, et al. Microstructural and mechanical properties development during quenching-partitioning-tempering process of Nb-VTi microalloyed ultra-high strength steel[J]. Materials Science and Engineering A, 2017, 705: 249-256. [12] Nes E, Ryum N, Hunderi O. On the Zener drag[J]. Acta Metallurgica, 1985, 33(1): 11-22. [13] Humphreys F J. A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures-Ⅱ. The effect of second phase particles[J]. Acta Materialia, 1997, 45(12): 5031-5039. [14] 孙 颖, 卢振敏. 长时保温条件下 316LN 不锈钢奥氏体晶粒的变化规律[J]. 金属热处理, 2017, 42(10): 220-222. Sun Ying, Lu Zhenmin. Change law of austenitic grain for 316LN steel under long heat preservation[J]. Heat Treatment of Metals, 2017, 42(10): 220-222. [15] Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Science, 1979, 13(3): 187-194. [16] 薛 莉, 张立文, 丁浩晨, 等. 20CrMnTi钢和20钢奥氏体晶粒长大行为对比[J]. 金属热处理, 2023, 48(10): 45-49. Xue Li, Zhang Liwen, Ding Haochen, et al. Comparision of austenite grain growth behavior of 20CrMnTi steel and 20 steel[J]. Heat Treatment of Metals, 2023, 48(10): 45-49. [17] 罗新民, 王安东, 陈彩凤. 不均匀因子与工具钢奥氏体晶粒长大的控制[J]. 金属热处理, 1999, 24(12): 13-17. Luo Xinmin, Wang Andong, Chen Caifeng, et al. Uneven factor and control of austenite grain growth of tool steels[J]. Heat Treatment of Metals, 1999, 24(12): 13-17. [18] 郭海滨, 左秀荣, 张新理, 等. 奥氏体化温度对奥氏体晶粒度及第二相固溶的影响[J]. 钢铁研究学报, 2016, 28(2): 63-68. Guo Haibin, Zuo Xiurong, Zhang Xinli, et al. Effect of austenitizing temperature on size of austenite grain and solid solution of second phase particles[J]. Journal of Iron and Steel Research, 2016, 28(2): 63-68. |