[1]Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [2]Pickering E, Jones N G. High-entropy alloys: A critical assessment of their founding principles and future prospects[J]. International Materials Reviews, 2016, 61(3): 183-202. [3]Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448-511. [4]吕昭平, 雷智锋, 黄海龙, 等. 高熵合金的变形行为及强韧化[J]. 金属学报, 2018, 51(11): 1553-1565. Lü Zhaoping, Lei Zhifeng, Huang Hailong, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metallurgica Sinica, 2018, 51(11): 1553-1565. [5]Qu W, Hou Y, Ren H, et al. Grain refinement of the CrMnFeCoNi high entropy alloy cast ingots by adding lanthanum[J]. Metallurgical and Materials Transactions B, 2021, 52: 1194-1199. [6]董 方, 毛 宁, 瞿 伟. La添加对FeMnCrNiCo高熵合金铸态组织及硬度的影响[J]. 金属热处理, 2021, 46(3): 116-120. Dong Fang, Mao Ning, Qu Wei. Effect of La addition on as-cast microstructure and hardness of FeMnCrNiCo high entropy alloy[J]. Heat Treatment of Metals, 2021, 46(3): 116-120. [7]Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dualphase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227-230. [8]Wu Z, Bei H, Otto F, et al. Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys[J]. Intermetallics, 2014, 46: 131-140. [9]He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system[J]. Acta Materialia, 2014, 62: 105-113. [10]Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture- resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345: 1153-1158. [11]Li Z Y, Fu L M, Peng J, et al. Effect of annealing on microstructure and mechanical properties of an ultrafine-structured Al-containing FeCoCrNiMn high-entropy alloy produced by severe cold rolling[J]. Materials Science and Engineering A, 2020, 786: 139446. [12]Wang C, Li T H, Liao Y C, et al. Hardness and strength enhancements of CoCrFeMnNi high-entropy alloy with Nd doping[J]. Materials Science and Engineering A, 2019, 764: 138192. [13]Chen J, Yao Z H, Wang X B, et al. Effect of C content on microstructure and tensile properties of as-cast CoCrFeMnNi high entropy alloy[J]. Materials Chemistry and Physics, 2018, 210: 136-145. [14]瞿 伟, 金自力, 崔瑞婷, 等. 基于CSP工艺下稀土元素对低碳钢冷轧板再结晶的影响[J]. 材料热处理学报, 2013, 34(S1): 56-60. Qu Wei, Jin Zili, Cui Ruiting, et al. Effect of rare earth elements on recrystallization nucleation and growth of the low carbon steel cold-rolled plates based on the CSP process[J]. Transaction of Materials and Heat Treatment, 2013, 34(S1): 56-60. [15]胡赓祥, 蔡 珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2006. |