[1]康大韬. 大型锻件材料及热处理[M]. 北京: 科学出版社, 1998. [2]张世中. 钢的过冷奥氏体转变曲线图集[M]. 北京: 冶金工业出版社, 1993: 18-20. [3]陈 涛, 赵爱民, 樊红亮, 等. 65MnCr耐磨钢的连续冷却曲线和相变规律[J]. 材料热处理学报, 2016, 37(9): 144-150. Chen Tao, Zhao Aimin, Fan Hongliang, et al. Continuous cooling curve and phase transformation behavior of wear resistant steel 65MnCr[J]. Journal of Materials and Heat Treatment, 2016, 37(9): 144-150. [4]蔡恒君, 高 喆, 宋仁伯, 等. 低碳低合金高强钢的连续转变行为及其相变模型[J]. 材料热处理学报, 2015, 36(3): 214-219. Cai Hengjun, Gao Zhe, Song Renbo, et al. Continuous cooling transformation behavior and phase transformation model in low carbon HSLA steel[J]. Transactions of Materials and Heat Treatment, 2015, 36(3): 214-219. [5]刘新华, 计云萍, 任慧平. 20MnCrNi2MoRE耐磨铸钢连续冷却转变曲线的测定[J]. 金属热处理, 2015, 40(1): 178-181. Liu Xinhua, Ji Yunping, Ren Huiping. Measurement of continuous cooling transformation curve of 20MnCrNi2MoRE wear-resistant cast steel[J]. Heat Treatment of Metals, 2015, 40(1): 178-181. [6]侯环宇, 黄艳新, 田志强, 等. 弹簧钢52CrMoV4连续冷却相变的组织变化[J]. 材料热处理学报, 2016, 37(9): 129-132. Hou Huanyu, Huang Yanxin, Tian Zhiqiang, et al. Microstructure evolution of spring steel 52CrMoV4 during continuous cooling transformation[J]. Transactions of Materials and Heat Treatment, 2016, 37(9): 129-132. [7]William J, Mehl R. Reaction kinetics in processes of nucleation and growth[J]. Trans Metall Soc AIME, 1939, 135: 416-442. [8]Avrami M. Kinetics of phase change. I General theory[J]. The Journal of Chemical Physics, 1939, 7(12): 1103-1112. [9]Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei[J]. The Journal of Chemical Physics, 1940, 8(2): 212-224. [10]Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III[J]. The Journal of Chemical Physics, 1941, 9(2): 177-184. [11]Vandermeer R A. Modeling diffusional growth during austenite decomposition to ferrite in polycrystalline Fe-C alloys[J]. Acta Metallurgica et Materialia, 1990, 38(12): 2461-2470. [12]Krielaart G P, Sietsma J, Zwaag van der Sybrand. Ferrite formation in Fe-C alloys during austenite decomposition under non-equilibrium interface conditions[J]. Materials Science and Engineering A, 1997, 237(2): 216-223. [13]Grange R A. Estimating critical ranges in heat treatment of steels[J]. Metal Progress, 1961, 79: 73-75. [14]Kirkaldy J S, Venugopalan D. Phase Transformations in Ferrous Alloys[M]. Marder D A R, Goldstein J I. AIME, New York, NY, 1983: 128-148. [15]Zener C. Kinetics of the decomposition of austenite[J]. Trans Aime, 1946, 167: 550-595. [16]Hillert M. The role of interfacial energy during solid-state phase transformations[J]. Jernkontorets Annaler, 1957, 141: 757-789. [17]Li M V, Niebuhr D V, Meekisho L L, et al. A computational model for the prediction of steel hardenability[J]. Metallurgical and Materials Transactions B, 1998, 29(3): 661-672. [18]Liu C, Zhao Z, Northwood D O, et al. A new empirical formula for the calculation of Ms temperatures in pure iron and super-low carbon alloy steels[J]. Journal of Materials Processing Technology, 2001, 113(1-3): 556-562. [19]Umemoto M, Owen W S. Effects of austenitizing temperature and austenite grain size on the formation of a thermal martensite in an iron-nickel and an iron-nickel-carbon alloy[J]. Metallurgical Transactions, 1974, 5(9): 2041-2046. [20]Guimar J R C, Gomes J C. The effects of pre-deformation and temperature of the transformation-deformation behavior of Fe-31%Ni-0.1%C[J]. Materials Science and Engineering, 1979, 39(2): 187-191. [21]Lee S J, Lee Y K. Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics[J]. Acta Materialia, 2008, 56(7): 1482-1490. [22]祖方遒. 材料成形基本原理[M]. 北京: 机械工业出版社, 2010: 50-70. [23]刘宗昌. 贝氏体相变的过渡性[J]. 材料热处理学报, 2003(2): 38-42. Liu Zongchang. Transition of bainite transformation[J]. Transactions of Materials and Heat Treatment, 2003(2): 38-42. [24]徐祖耀. 马氏体相变与马氏体[M]. 北京: 科学出版社, 1980: 1-45. [25]陈睿恺. 30Cr2Ni4MoV钢低压转子热处理工艺的研究[D]. 上海: 上海交通大学, 2012. |