[1] 杜青林, 亢淑梅, 李顺涛. 超低温高锰钢焊接技术发展及在LNG储罐中的应用[J]. 科技创新与应用, 2021(11): 40-43. [2] 陈 俊, 孟传峰, 孙 超, 等. LNG储罐用高锰钢关键基础与技术开发[N]. 世界金属导报, 2019-11-24(B04). [3] 陈亚魁. 超低温高锰钢焊接材料的研发: 熔敷金属力学性能和微观组织[D]. 武汉: 武汉科技大学, 2020. [4] 杨 江. 低温高锰钢焊接热影响区组织演变与力学性能研究[D]. 大连: 大连理工大学, 2021. [5] 孟 亮, 王红鸿, 陈亚魁, 等. LNG用高锰钢熔敷金属低温冲击韧性研究[J]. 电焊机, 2020, 50(11): 120-123. Meng Liang, Wang Honghong, Chen Yakui, et al. Research on cryogenic impact toughness of deposited metals of high manganese steel for LNG[J]. Electric Welding Machine, 2020, 50(11): 120-123. [6] 黄有林, 王建波, 凌学士, 等. 热加工图理论的研究进展[J]. 材料导报, 2008, 22(S3): 173-176. Huang Youlin, Wang Jianbo, Ling Xueshi, et al. Research development of hot processing map theory[J]. Materials Reports, 2008, 22(S3): 173-176. [7] 郭卜瑞, 徐佳炜, 刘世媛, 等. 40Cr钢热变形行为及热加工图[J]. 塑性工程学报, 2023, 30(2): 97-104. Guo Burui, Xu Jiawei, Liu Shiyuan, et al. Hot deforming behavior and hot processing map of 40Cr steel[J]. Journal of Plasticity Engineering, 2023, 30(2): 97-104. [8] 杨青云, 马博荣, 韩茂盛. 铝白铜合金热变形行为及热加工图的研究[J]. 热加工工艺, 2023, 52(19): 91-95. Yang Qingyun, Ma Borong, Han Maosheng. Study on hot deformation behavior and hot processing map of aluminum white copper alloy[J]. Hot Working Technology, 2023, 52(19): 91-95. [9] 彭 力, 江 健, 罗小峰, 等. TA18钛合金热变形行为及热加工图研究[J]. 钢铁钒钛, 2022, 43(6): 45-50. Peng Li, Jiang Jian, Luo Xiaofeng, et al. Hot deformation behavior and processing maps of TA18 titanium alloy[J]. Iron Steel Vanadium Titanium, 2022, 43(6): 45-50. [10] 李德君, 白 强, 宋生印, 等. Fe-20Mn-3Si-3Al TRIP钢热变形行为及热加工图[C]//中国机械工程学会热处理分会第十一次全国热处理大会论文集. 2015: 1140-1144. [11] 崔海涛, 董旭光, 邵忠财. Fe-20Mn-4Si-2Al高锰钢热加工性能研究[J]. 装备环境工程, 2018, 15(4): 1-4. Cui Haitao, Dong Xuguang, Shao Zhongcai. Hot deformation behaviors of Fe-20Mn-4Al-2Si high-manganese steel[J]. Equipment Environmental Engineering, 2018, 15(4): 1-4. [12] 王志蒙. 低碳高锰钢热变形行为研究[D]. 秦皇岛: 燕山大学, 2017. [13] Puchi-Cabrera E S, Guérin J D, La Barbera-Sosa J G, et al. Friction correction of austenite flow stress curves determined under axisymmetric compression conditions[J]. Experimental Mechanics, 2019(3): 445-458. [14] Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming[J]. Journal of Materials Processing Technology, 2004, 152(2): 136-143. [15] 尚丽梅, 王春旭, 韩 顺, 等. 基于摩擦-温度双修正的Maraging250钢热变形行为及热加工图[J]. 金属热处理, 2021, 46(5): 111-117. Shang Limei, Wang Chunxu, Han Shun, et al. Hot deformation behavior and processing maps of Maraging250 steel based on friction and temperature double correction[J]. Heat Treatment of Metals, 2021, 46(5): 111-117. [16] Li L, Zhou J, Duszczyk J. Determination of a constitutive relationship for AZ31B magnesium alloy and validation through comparison between simulated and real extrusion[J]. Journal of Materials Processing Technology, 2006, 172(3): 372-380. [17] Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138. [18] 胡家齐, 王长军, 杨 哲, 等. AM355不锈钢的热变形行为[J]. 金属热处理, 2020, 45(3): 50-59. Hu Jiaqi, Wang Changjun, Yang Zhe, et al. Hot deformation behaviors of AM355 stainless steel[J]. Heat Treatment of Metals, 2020, 45(3): 50-59. [19] 邹德宁, 韩 彤, 张 威, 等. 马氏体时效硬化不锈钢高温流变应力本构模型[J]. 塑性工程学报, 2018, 25(5): 248-253. Zou Dening, Han Tong, Zhang Wei, et al. Constitutive model for high-temperature flow stress of martensitic age hardening stainless steel[J]. Journal of Plasticity Engineering, 2018, 25(5): 248-253. [20] 林启权, 彭大暑, 朱远志. Al-Cu-Mg(2519)合金高温变形本构关系的神经网络模型[J]. 锻压技术, 2005, 30(1): 75-78. Lin Qiquan, Peng Dashu, Zhu Yuanzhi. Neural net work model for the constitutive relationship of the Al-Cu-Mg(2519)aluminum alloy at elevated temperature[J]. Forging and Stamping Technology, 2005, 30(1): 75-78. [21] 王俊峰, 何煜天. DH780钢的热变形行为及热加工图[J]. 金属热处理, 2020, 45(6): 114-119. Wang Junfeng, He Yutian. Hot deformation behavior and hot processing map of DH780 steel[J]. Heat Treatment of Metals, 2020, 45(6): 114-119. [22] Prasad Y V R K. Processing maps: A status report[J]. Journal of Materials Engineering and Performance, 2003, 12(6): 638-645. |