| [1]钟顺思, 王昌生. 轴承钢[M]. 北京: 冶金工业出版社, 2000. [2]刘洪秀, 于兴福, 魏英华, 等. 航空轴承钢的发展及热处理技术[J]. 航空制造技术, 2020, 63(1): 94-101.
 Liu Hongxiu, Yu Xingfu, Wei Yinghua, et al. Development of aviation bearing steel and heat treatment technology[J]. Aeronautical Manufacturing Technology, 2020, 63(1): 94-101.
 [3]周景欢, 王伟伟. 论航空轴承技术现状与发展[J]. 山东工业技术, 2019(3): 62.
 [4]Kim K, Park H W, Ding S, et al. Flow stress of duplex stainless steel by inverse analysis with dynamic recovery and recrystallization model[J]. ISIJ International, 2021, 61(1): 280-291.
 [5]林 武, 李红英, 曾翠婷, 等. 一种低碳微合金管线钢的热变形行为[J]. 中南大学学报: 自然科学版, 2010, 41(3): 940-947.
 Lin Wu, Li Hongying, Zeng Cuiting, et al. Hot deformation behavior for a kind of low carbon micro-alloy pipeline steel[J]. Journal of Central South University, 2010, 41(3): 940-947.
 [6]Xi T, Yin L, Yang C G, et al. Hot deformation behavior and processing map of a Cu-bearing 2205 duplex stainless steel[J]. Acta Metallurgica Sinica (English Letters), 2019, 32(12): 1537-1548.
 [7]何 婵, 邹德宁, 赵 洁, 等. 2507超级双相不锈钢的流变应力本构关系及热加工图[J]. 金属热处理, 2022, 47(1): 94-99.
 He Chan, Zou Dening, Zhao Jie, et al. Flow stress constitutive relationship and processing map of super duplex stainless steel 2507[J]. Heat Treatment of Metals, 2022, 47(1): 94-99.
 [8]李胤宪. 630 ℃超超临界转子钢高温变形行为及显微组织演化规律研究[D]. 秦皇岛: 燕山大学, 2021.
 Li Yinxian. High temperature deformation behavior and microstructure evolution of 630 ℃ ultra supercritical rotor steel[D]. Qinhuangdao: Yanshan University, 2021.
 [9]Zhao Chao, Zhang Jin, Yang Bing, et al. Hot deformation characteristics and processing map of 1Cr12Ni2Mo2WVNb martensitic stainless steel[J]. Steel Research International, 2020, 91(7): 202000020.
 [10]Xi S P, Gao X L, Liu W, et al. Hot deformation behavior and processing map of low-alloy offshore steel[J]. Journal of Iron and Steel Research International, 2022, 29(3): 474-483.
 [11]林 洪. 3Cr20Ni10W2耐热合金钢高温塑性变形本构描述[J]. 金属热处理, 2014, 39(2): 107-111.
 Lin Hong. A constitutive description for hot flow behavior of 3Cr20Ni10W2 alloy steel[J]. Heat Treatment of Metals, 2014, 39(2): 107-111.
 [12]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.
 [13]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.
 [14]吴 琨. 经济型双相不锈钢2101高温变形行为及机理研究[D]. 西安: 西安建筑科技大学, 2013.
 Wu Kun. Study on hot deformation behavior and mechanism of economical duplex stainless steel 2101[D]. Xi'an: Xi'an University of Architecture and Technology, 2013.
 [15]Medina S F, Hernandez C A. General expression of the Zener-Hollomon parameter as a function of the chemical composition of low alloy and microalloyed steels[J]. Acta Materialia, 1996, 44(1): 137-148.
 [16]Sellars C M, Zhu Q. Microstructural modelling of aluminium alloys during thermomechanical processing[J]. Materials Science and Engineering A, 2000, 280(1): 1-7.
 [17]Khatami-Hamedani H, Zarei-Hanzaki A, Abedi H R, et al. Dynamic restoration of the ferrite and austenite phases during hot compressive deformation of a lean duplex stainless steel[J]. Materials Science and Engineering A, 2020, 788: 139400.
 [18]Prasad Y V R K, Rao K P, Sasidhara S. Hot Working Guide: Compendium of Processing Maps[M]. ASM International, 2015.
 [19]Seshacharyulu T. Modelling of hot deformation for microstructural control[J]. International Materials Reviews, 1997, 43(6): 243-258.
 |