| [1]耿永锋, 张 毅, 田保红, 等. 形变热处理对Cu-0.80Cr-0.30Zr-0.03P合金时效性能的影响[J]. 材料热处理学报, 2019, 40(8): 69-75. Geng Yongfeng, Zhang Yi, Tian Baohong, et al. Effects of thermo-mechanical treatment on aging properties of Cu-0.80Cr-0.30Zr-0.03P alloy[J]. Transactions of Materials and Heat Treatment, 2019, 40(8): 69-75.
 [2]赵冬梅, 董企铭, 刘 平, 等. 超高强度Cu-Ni-Si合金时效过程研究[J]. 材料热处理学报, 2002, 23(2): 20-23.
 Zhao Dongmei, Dong Qiming, Liu Ping, et al. Study on the ageing process of a super high-strength Cu-Ni-Si alloy[J]. Transactions of Materials and Heat Treatment, 2002, 23(2): 20-23.
 [3]董琦祎, 汪明朴, 贾延琳, 等. 磷含量对Cu-Fe-P合金组织与性能的影响[J]. 材料热处理学报, 2013, 34(6): 75-79.
 Dong Qiyi, Wang Mingpu, Jia Yanlin, et al. Effect of P content on microstructure and property of Cu-Fe-P alloys[J]. Transactions of Materials and Heat Treatment, 2013, 34(6): 75-79.
 [4]徐晓岑, 李家智, 丁 桦, 等. 组合形变热处理工艺对Cu-Cr-Zr-Si合金组织性能及抗软化特性的影响[J]. 材料热处理学报, 2021, 42(7): 57-64.
 Xu Xiaocen, Li Jiazhi, Ding Hua, et al. Effect of combined thermo-mechanical treatment on microstructure, properties and softening resistance of Cu-Cr-Zr-Si alloy[J]. Transactions of Materials and Heat Treatment, 2021, 42(7): 57-64.
 [5]从善海, 韩 芳, 汪旭超. 超高强Cu-Ni-Sn合金的热处理工艺与组织性能[J]. 金属热处理, 2010, 35(6): 43-47.
 Cong Shanhai, Han Fang, Wang Xuchao. Heat treatment process, microstructure properties of super high strength Cu-Ni-Sn alloy[J]. Heat Treatment of Metals, 2010, 35(6): 43-47.
 [6]Yang Y H, Li S Y, Cui Z S, et al. Microstructure and properties of high-strength Cu-Ni-Si-(Ti) alloys[J]. Rare Metals, 2021, 40(11): 3251-3260.
 [7]饶劢攀, 刘 勇, 田保红, 等. Cu-Ni-Si-Co-Zr合金的热压缩行为[J]. 材料热处理学报, 2021, 42(8): 48-53.
 Rao Maipan, Liu Yong, Tian Baohong, et al. Hot compression behavior of Cu-Ni-Si-Co-Zr alloy[J]. Transactions of Materials and Heat Treatment, 2021, 42(8): 48-53.
 [8]沈 斌, 程建奕, 李海英. Cu-Cr-Zr-Mg合金的相变动力学[J]. 材料热处理学报, 2014, 35(9): 121-125.
 Shen Bin, Cheng Jianyi, Li Haiying. Dynamics of phase transformation of Cu-Cr-Zr-Mg alloy[J]. Transactions of Materials and Heat Treatment, 2014, 35(9): 121-125.
 [9]任维佳. 导电弹性Cu-Ti-Ni-X(Ag,Y)合金组织与性能研究[D]. 西安: 西安理工大学, 2016.
 Ren Weijia. Investigation on microstructure and properties of conductive elastic Cu-Ti-Ni-X(Ag,Y) alloys[D]. Xi'an: Xi'an University of Technology, 2016.
 [10]王 剑, 阙仲萍, 陈 津, 等. Zn对Cu-Ni-Ti合金导电率和硬度的影响研究[J]. 太原理工大学学报, 2015, 46(1): 35-39.
 Wang Jian, Que Zhongping, Chen Jin, et al. Effect of zinc on electrical conductivity and mechanical properties of Cu-Ni-Ti alloy[J]. Journal of Taiyuan University of Technology, 2015, 46(1): 35-39.
 [11]王 剑, 陈 津, 阙仲萍. 合金元素Sn对Cu-Ni-Ti合金微观组织和性能的影响[J]. 太原理工大学学报, 2018, 49(4): 517-524.
 Wang Jian, Chen Jin, Que Zhongping. Effect of Sn on microstructure and properties of Cu-Ni-Ti alloy[J]. Journal of Taiyuan University of Technology, 2018, 49(4): 517-524.
 [12]Liu J, Liu J, Wang X, et al. Phase-transformation dynamics and characterization of precipitates in the Cu-3Ti-3Ni-0.5Si alloy[J]. Materials and Technology, 2021, 55(4): 483-489.
 [13]Kim H G, Lee T W, Kim S M, et al. Effects of Ti addition and heat treatments on mechanical and electrical properties of Cu-Ni-Si alloys[J]. Metals and Materials International, 2013, 19(1): 61-65.
 [14]黄 富, 余方新, 冯桄波, 等. 高强铜钛合金的发展与应用[J]. 特种铸造及有色合金, 2020, 40(5): 502-506.
 Huang Fu, Yu Fangxin, Feng Guangbo, et al. Development and application of high strength and high elasticity copper-titanium alloy[J]. Special Casting and Nonferrous Alloys, 2020, 40(5): 502-506.
 [15]满绪存. Ni、Ti原子比例及含量对Cu-Ni-Ti合金组织性能的影响[D]. 赣州: 江西理工大学, 2021.
 Man Xucun. Effect of atomic ratio and content of Ni and Ti on microstructure and properties of Cu-Ni-Ti alloys[D]. Ganzhou: Jiangxi University of Science and Technology, 2021.
 [16]Liu J, Wang X, Guo T, et al. Microstructure and properties of Cu-Ti-Ni alloys[J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(11): 1199-1204.
 [17]刘 佳, 王献辉, 冉倩妮, 等. 深冷处理对Cu-3Ti-5Ni合金组织与性能的影响[J]. 金属热处理, 2015, 40(11): 160-164.
 Liu Jia, Wang Xianhui, Ran Qianni, et al. Effect of cryogenic treatment on microstructure and properties of Cu-3Ti-5Ni alloy[J]. Heat Treatment of Metals, 2015, 40(11): 160-164.
 [18]Zhang P, Li Y, Lei Q, et al. Microstructure and mechanical properties of a Cu-Ni-Ti alloy with a large product of strength and elongation[J]. Journal of Materials Research and Technology, 2020, 9(2): 2299-2307.
 [19]Liu J, Wang X, Ran Q, et al. Microstructure and properties of Cu-3Ti-1Ni alloy with aging process[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(12): 3183-3188.
 [20]康军伟, 周延军, 宋克兴, 等. 高强高导Cu-Cr-X合金退火态组织性能[J]. 材料热处理学报, 2020, 41(6): 62-68.
 Kang Junwei, Zhou Yanjun, Song Kexing, et al. Microstructure and properties of annealed high strength and high conductivity Cu-Cr-X alloy[J]. Transactions of Materials and Heat Treatment, 2020, 41(6): 62-68.
 |