| [1]尚 进, 曹 玮, 陈永畅. 热处理对3D打印钛合金耐蚀性的影响[J]. 腐蚀与防护, 2020, 41(5): 27-29, 62. Shang Jin, Cao Wei, Chen Yongchang. Effect of heat treatment on corrosion resistance of 3D printed titanium alloy[J]. Corrosion and Protection, 2020, 41(5): 27-29, 62.
 [2]Lu Haifei, Wang Zhao, Cai Ji, et al. Effects of laser shock peening on the hot corrosion behavior of the selective laser melted Ti-6Al-4V titanium alloy[J]. Corrosion Science, 2021, 188(4): 109558.
 [3]Chen Lin, Jin Xiaoyue, Pang Pan, et al. Electrochemical study of TA2 titanium in a high-temperature and pressure water environment[J]. Coatings, 2021, 11(6): 659.
 [4]Fan Xiaoguang, Yang He, Gao Pengfei, et al. Morphology transformation of primary strip α phase in hot working of two-phase titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(6): 1294-1305.
 [5]Ji Zhe, Yang He, Li Hongwei. Evolution of two types of α plates in tri-modal microstructure of TA15 alloy under varying processing conditions[J]. Rare Metal Materials and Engineering, 2015, 44(3): 527-531.
 [6]Danard Y, Martin G, Lilensten L, et al. Accommodation mechanisms in strain-transformable titanium alloys[J]. Materials Science and Engineering A, 2021, 819: 141437.
 [7]Pazhanivel B, Sathiya P, Muthuraman K, et al. Influence of NaCl environment on stress corrosion cracking of additive manufactured Ti-6Al-4V alloy[J]. Engineering Failure Analysis, 2021, 127: 105515.
 [8]Li Zhixin, Zhan Mei, Guo Kun, et al. Texture development of Ti-3Al-2.5V titanium alloy tubes[J]. Rare Metal Materials and Engineering, 2017, 46(11): 3169-3175.
 [9]Yang Xiaokang, Wang Kuaishe, Shi Jiamin, et al. Elevated temperature deformation behavior of TA7 titanium alloy[J]. Rare Metal Materials and Engineering, 2018, 47(8): 2341-2346.
 [10]Ratochka I, Lykova O, Mishin I, et al. Superplastic deformation behavior of Ti-4A1-2V alloy governed by its structure and precipitation phase evolution[J]. Materials Science and Engineering A, 2018, 731: 577-582.
 [11]Zhou Xing, Xu Dake, Geng Shujiang, et al. Mechanical properties, corrosion behavior and cytotoxicity of Ti-6Al-4V alloy fabricated by laser metal deposition[J]. Materials Characterization, 2021, 179: 111302.
 [12]Chuvil'deev V N, Kopylov V I, Nokhrin A V, et al. Simultaneous increase in the strength, plasticity, and corrosion resistance of an ultrafine-grained Ti-4A1-2V pseudo-α-titanium alloy[J]. Technical Physics Letters, 2017, 43(5): 466-469.
 [13]吴 颖, 曾 强, 肖辉进, 等. 退火处理对3D打印CoCrFeMnNi高熵合金组织和性能的影响[J]. 金属热处理, 2021, 46(8): 192-196.
 Wu Ying, Zeng Qiang, Xiao Huijin, et al. Effect of annealing treatment on microstructure and properties of 3D printed CoCrFeMnNi high-entropy alloy[J]. Heat Treatment of Metals, 2021, 46(8): 192-196.
 [14]代永娟, 武祥祥, 李佳坤, 等. 退火温度对Fe-24.38Mn-0.44C TWIP钢组织性能的影响[J]. 金属热处理, 2022, 47(2): 146-152.
 Dai Yongjuan, Wu Xiangxiang, Li Jiakun, et al. Effect of annealing temperature on microstructure and properties of Fe-24.38Mn-0.44C TWIP steel[J]. Heat Treatment of Metals, 2022, 47(2): 146-152.
 [15]杨礼林, 郭晓雨, 张年迪, 等. 含锡取向硅钢高温二次再结晶退火过程中抑制剂的析出特点[J]. 金属热处理, 2022, 47(6): 155-160.
 Yang Lilin, Guo Xiaoyu, Zhang Niandi, et al. Precipitation characteristics of inhibitors in tin-oriented silicon steel during high temperature secondary recrystallization annealing[J]. Heat Treatment of Metals, 2022, 47(6): 155-160.
 [16]李明兵, 王新南, 商国强, 等. TC32钛合金不同热处理工艺下的组织性能及断裂机制[J]. 金属热处理, 2021, 46(4): 112-117.
 Li Mingbing, Wang Xinnan, Shang Guoqiang, et al. Microstructure, mechanical properties and fracture mechanism of TC32 titanium alloy with different heat treatment processes[J]. Heat Treatment of Metals, 2021, 46(4): 112-117.
 [17]胡生双, 孟晓川, 王 清, 等. 双重退火工艺对TC21钛合金力学性能和断口形貌的影响[J]. 金属热处理, 2020, 45(5): 110-114.
 Hu Shengshuang, Meng Xiaochuan, Wang Qing, et al. Effect of double annealing process on mechanical properties and fracture morphology of TC21 titanium alloy[J]. Heat Treatment of Metals, 2020, 45(5): 110-114.
 [18]Claros C A E, Campanelli L C, Junior A M J, et al. Corrosion behavior of biomedical β-titanium alloys with the surface-modified by chemical etching and electrochemical methods[J]. Corrosion Science, 2021, 188: 109544.
 [19]Li Qiang, Chen Kai, Xia Chaoqun, et al. Microstructure evolution, mechanical properties, and corrosion behavior of novel Zr-Ti-V alloys[J]. Materials Science and Engineering A, 2021, 817: 141358.
 [20]Kuczyńska Z D, Sotniczuk A, Pisarek M, et al. Corrosion behavior of titanium modified by direct laser interference lithography[J]. Surface and Coatings Technology, 2021, 418(3): 127219.
 [21]Chen Jun, Zhang Qing. Effect of electrochemical state on corrosion-wear behaviors of TC4 alloy in artificial seawater[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(4): 1011-1018.
 [22]Li Fangfang, Lu Lei, Meng Xiandong, et al. An enhanced hydrogen corrosion by the Ti(C,N) inclusions in U-0.79wt%Ti alloy[J]. Journal of Alloys and Compounds, 2020, 820: 153124.
 [23]张 宁, 曹贯宇, 冀鹏飞, 等. 退火工艺对TA17钛合金组织及力学性能的影响[J]. 热加工工艺, 2019, 48(14): 133-136.
 Zhang Ning, Cao Guanyu, Ji Pengfei, et al. Effects of annealing process on microstructure and mechanical properties of TA17 titanium alloy[J]. Hot Working Technology, 2019, 48(14): 133-136.
 [24]Wei Huan, Hou Lifeng, Cui Yanchao, et al. Effect of Ti content on corrosion behavior of Cu-Ti alloys in 3.5%NaCl solution[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(4): 669-675.
 [25]Ju Jiang, Li Jingjing, Jiang Min, et al. Microstructure and electrochemical corrosion behavior of selective laser melted Ti-6Al-4V alloy in simulated artificial saliva[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(1): 167-177.
 [26]Mohamed H, Akeem Y, Madhan K, et al. Improvement of in vitro corrosion, wear, and mechanical properties of newly developed Ti alloy by thermal treatment for dental applications[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(4): 952-966.
 |