| [1] Hald J. Metallurgy and creep properties of new 9-12%Cr steels[J]. Materials Technology, 1996, 67(9): 369-374. [2] Abe F. Precipitate design for creep strengthening of 9%Cr tempered martensitic steel for ultra-supercritical power plants[J]. Science and Technology of Advanced Materials, 2008, 9(1): 013002.
 [3] Hald J. Microstructure and long-term creep properties of 9-12%Cr steels[J]. International Journal of Pressure Vessels and Piping, 2008, 85(1/2): 30-37.
 [4] Abe F, Horiuchi T, Taneike M, et al. Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature[J]. Materials Science and Engineering A, 2004, 378(1/2): 299-303.
 [5] Cerjak H, Hofer P, Schaffernak B. The influence of microstructural aspects on the service behaviour of advanced power plant steels[J]. ISIJ International, 1999, 39(9): 874-888.
 [6] 严 鹏. 新型马氏体耐热钢G115的组织与性能研究[D]. 北京: 清华大学, 2014.
 [7] 王 学, 于淑敏, 任遥遥, 等. T92钢时效的Laves相演化行为[J]. 金属学报, 2014, 50(10): 1195-1202.
 Wang Xue, Yu Shumin, Ren Yaoyao, et al. Laves phase evolution in T92 steel during ageing[J]. Acta Metallurgica Sinica, 2014, 50(10): 1195-1202.
 [8] Prawoto Y, Jasmawati N, Sumeru K. Effect of prior austenite grain size on the morphology and mechanical properties of martensite in medium carbon steel[J]. Journal of Materials Science and Technology, 2012, 28(5): 461-466.
 [9] Khayatzadeh S, Tanner D W J, Truman C E, et al. Creep deformation and stress relaxation of a martensitic T92 steel at 650 ℃[J]. Engineering Fracture Mechanics, 2017, 175: 57-71.
 [10] Sklenička V, Kuchařová K, Král P, et al. The effect of hot bending and thermal ageing on creep and microstructure evolution in thick-walled P92 steel pipe[J]. Materials Science and Engineering A, 2015, 644: 297-309.
 [11] 彭志方, 蔡黎胜, 彭芳芳, 等. T92钢625 ℃持久性能分段特征与各段中M23C6及Laves相相参数的定量变化研究[J]. 金属学报, 2010, 46(4): 429-434.
 Peng Zhifang, Cai Lisheng, Peng Fangfang, et al. Study on the multi-segment feature of 625 ℃ creep-repture property and the quatitative change of phase parameters of M23C6 and Laves phases in each segment of T92 steel[J]. Acta Metallurgica Sinica, 2010, 46(4): 429-434.
 [12] 王 学, 李 勇, 任遥遥, 等. Laves相析出对T92钢合金元素再分布的影响[J]. 金属学报, 2014, 50(10): 1203-1209.
 Wang Xue, Li Yong, Ren Yaoyao, et al. Effect of Laves phase precipitation on redistribution of alloying elements in T92 steel[J]. Acta Metallurgica Sinica, 2014, 50(10): 1203-1209.
 [13] Korcakova J H L, Somers M A J. Quantification of Laves phase particle size in 9CrW steel[J]. Materials Characterization, 2001, 47(2): 111-117.
 [14] Zhang J, Du B S, Li X M, et al. Microstructure evolution of T92 steel weld metal after service for 8000 h[J]. Kovove Materialy, 2017, 55(2): 115-121.
 [15] Xu Y, Nie Y, Wang M, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging[J]. Acta Materialia, 2017, 131: 110-122.
 [16] Lee K H, Park D B, Kwun S L, et al. Effect of creep deformation on the microstructural evolution of 11CrMoVNb heat resistant steel[J]. Materials Science and Engineering A, 2012, 536: 92-97.
 [17] Xiao B, Xu L Y, Zhao L, et al. Microstructure evolution and fracture mechanism of a novel 9Cr tempered martensite ferritic steel during short-term creep[J]. Materials Science and Engineering A, 2017, 707: 466-477.
 [18] Golański G, Kolan C, Jasak J. Creep[M]. Inter: Intechopen, 2018.
 [19] 潘金生, 田民波, 仝健民. 材料科学基础[M]. 北京: 清华大学出版社, 2011.
 [20] Maruyama K S K, Koike J. Strengthening mechanisms of creep resistant tempered martensitic steel[J]. ISIJ International, 2016, 41(6): 641-653.
 [21] Bao H S, Cheng S C, Liu Z D, et al. Aging precipitates and strengthening mechanism of T122 boiler steel[J]. Journal of Iron and Steel Research, International, 2010, 17(2): 67-73.
 [22] Jin X, Zhu B Y, Li Y F, et al. Effect of the microstructure evolution on the high-temperature strength of P92 heat-resistant steel for different servicetimes[J]. International Journal of Pressure Vessels and Piping, 2020, 186: 104131.
 |